Generating Multilingual Natural Language
Expressions for Grail Concepts

Part |: Theory

Wim Claassen
University of Nijmegen
NICI

Contents

(g1 oo [Box 1T] o FO PPN 1
00 R € - T TP T PP PURPP 1
L2 WY NG ettt ettt ettt ettt e e ettt e e e ettt e e e ekt e e e e et e e e e e e eemmas e ee e aneaebeeesansaebeeee e naebeeeaann 2
1.3 HOW COUIT thiS WOTK?. ...ttt ettt et e et et ek s e e e bbb e e e e eeeeeeeeeeeeeas e e 2

2 Syntactic issues in Multilingual natural langU@BBIETAtION.............evuuuiiiii e eee e eeeme s e e e e e e ee e e e e e 3
2.1 Generic liNQUISTIC FrAMEWOTKo iiiieeee e e re e e e e e e e e e e e eeeeeaeeaennnn e eaeeas 3

2.2 Language Specific components...........cceceeeeeeerennnn. ettt eem—eeeeeeeeeaee e trr e ————_ 5
2.2.1 Grammar specificationcccceeeeveeeeeeeeniennnn. ettt eem—eeeeeeeeeaee e trr e ————_ 5
2.2.2 POPUIAtING the LEXICON ciii et eeeeee et e e e ettt e e s e e mn s e es e e e e e eeeeeaesnsan s eneaeeeeeeaesees 6

2.3 Syntactic tree formation in SEgMENT GramMMEAl ieeieeeeeieeieiieit e ee e e s e emneanarr e e e e eeeeeeeare e e eeeens 6
2.3.1 Syntactic trees
RS A VYo (o lo] (o [S PO OPPTPPPPPT
R RS I 1Y (o] (o i (o1 o EEU PO PTPPPTPPPRN
3 Generating phrases to describe Grail concepts....
3.1 Annotating grail concepts With lINQUISTIC @Bccoovreirieiie e s ceere e e e e ee e e e
B 700 I T 0o T oL =g T o] = 14T SO
3.1.2 Relation annotations and SYNTACHIC fraMESu .. . iieieee e e e e e 12
3.2 Modeling schemes and filErING...........ciier i e s 15
3.2.1 FEature-State SCNEIMEttt e e eeee e e e e e e e e e e e senines 15
T 10 (o o= = (oo =To (U 16
3.2.3 UNWANTEA CIIEEIIB. ... eeeeeieie e et s sttt ettt et et e e e e e e e etk ke sa sas b s e e e e eeeeeaeeeaeasenean e nnnes 71
T2 - Vo o 1 To IV aTo I8 11 2= 410 17
3.3 The Natural Language Generation algorithm...........coooiiiiiiiiiii i e e e e e e aeeaees 18
3.3.1 Generating the CONSHIUENT STIUCIUIE ..cveeeeeiiiiieiiiii e s er e e e e e e e e e e e e e e e aeeaanne s 19
3.3.2 Serializing the constituent structure
3.3.3 Producing the SUIMACE SIHNQ e ceveeeeiii e e e e e eeeee e s s e e ereeeae e e ee e e eeeeeaeeaeanenn s eneeeeees
A REFEIEINCES ...t et ettt ettt e et et e e et e eeeeee e e e e e et ea b b abe e e e e eeeteee e e e aeaaeeeaaean

1 Introduction

The documentation on the ROIS based Natural Larey@Gmerator developed within the context of the
Galen In Use project consist of three papers: (hearetical paper on the design of the generé2pr
description of its implementation, and (3) a mdrléscribing how the generator is to be used.

The current paper provides some theoretical backgt@n the Multilingual Natural Language
Generator that is under development at NICI wittie context of the Galen In Use project. The gsal
to develop a multilingual natural language generttat produces natural language descriptions of
conceptual structures in a concept representadiogulage called Grail. The generator is based on
Segment Grammar, and implemented using the knoelegjgresentation tool ROIS (Relation Oriented
Inference System). The generator consists of argealgorithm (implemented in ROIS NPL) that is
applied to language specific lexicons and gramnigtre.key design requirements are flexibility,
extendibility, usefulness of the generator in prattapplications, and the possibility to reuse the
language specific lexicons and grammars in a nmtilal natural language analyzer. The initial targe
languages are Dutch, English and Finnish.

This paper assumes a basic understanding of theamhedncept representation language Grail. If you
are unfamiliar with notions such as ‘subsumptioeraichy’, ‘prototypes’ and ‘defining criteria’ plsa
consult some introductory material on Grail. In iddd we assume that you are familiar with ROIS and
the ROIS development tools Idefix and Mole. In oriebe able to use the natural language generation
software package to create a generator for a pé&titanguage you will also have to be familiartwit
both the basic linguistic notions concerning sytitegtructures in general and the actual grammiasru
of that language. The rest of this section willyide a high-level overview of the problems, and the
solutions adopted.

1.1 Grail
The input structures to the generator are Graitepts such as (1) and (2) betow

(1) (Fracture which < hasLocation Femur >)
(2) (SurgicalDeed which <
isCharacterisedBy
(performance whichG < isEnactmentOf
(Removal which <
actsSpecificallyOn
(Abscess which < hasLocation ExternalEar
hasSeverity (Severity which <
hasAbsoluteState severe >) >)
hasExtend complete >) >)
isCharacterisedBy
(nonPerformance whichG < isEnactmentOf
(Incision which < actsSpecificallyOn Pinna >) >) >)

Concept (1) could be described in English by ¢tg phrasefracture of the femuor femoral fracture
and concept (2) by the phragsenoval of severe abscess of external ear withraisiion of auricle

An important aspect of the formal concept represtiont language Grail is that it is compositional.
Primitive concepts, such &sacture andFemur, can be combined into composite Grail conceptsh as
(Fracture which < hasLocation Femur > knowledge engineer defines the primitive consejb
interest and a set of rules that specify how corscegin be combined into more complex composite

! For matters of convenience Grail concepts are gitesented by lines of Grail source code thatctbel
evaluated by a Grail source code compiler such@&ICE Workspace. Note however that the writtesgmtation
of the canonical form of the resulting concept witen differ more or less substantially from tloeise code
presentation. The canonical presentation of exa®)lér instance, will not contain the conceptrgicalDeed, as
in the current CORE model SurgicalDeed is an alfake composite concept (Process which < hasG@liRime
SurgicalRole >). Instead the primitive concept Bsscand its defining criterion hasClinicalRole-$eatiRole will
appear.

In the rest of this paper composite Grail concepéspresented in canonical form. The syntax otdrenical
presentation is similar to Grail, only the semantldfer. The major reason for using the canornicakentation is
that it immediately shows what the base and thimighef criteria of the composite concept are.

2 Composite Grail concepts are sometimes caltetbtypesor particularisations | prefer to use the less technical
termcomposite concepts

concepts. A given set of primitive concepts and lmio@tion rules defines a so-callewdel of concepts
which is the set of all concepts that can be deedrusing the primitive concepts and the combimatio
rules. In this sense Grail is said to bgemerativeconcept representation language.

1.2 Why NLG?

In essence Gralil is intended as a conceptual ingerh between medical applications and coding
schemes in the medical domain. However, althouglcejots from a Grail model can be presented
visually to humans by expressions in the Grail lzage, structures such as (2) above clearly illtestra
that non-Grail experts will need a more compreh#agiresentations such as a natural language
phrases.

If all primitive and composite concepts of a Graibdel could be expressed using single content words
(e.g., the nourfracture), producing multilingual natural language desdoips$ for Grail concepts would
be a rather trivial and uninteresting table looktagk. The problem becomes interesting howevernwhe
single words are not sufficient to describe a casitpdGrail concept. In that case it is necessary to
describe the concept using a more complex natarguage phrase, possibly containing prepositional
phrases, adjectives and other modifiers.

1.3 How could this work?

The hypothesis is that a natural language desonitf a Grail concept can be produced by combining
the words that express the individual componente@®toncept in a syntactically correct way. For
example:(Fracture which < hasLocation Femur xgan be described by the English noun phrases
fracture of the femuor femoral fracture These two phrases are alternative natural laregdesgcriptions
that combine the English worésmur, femoralndfracture using a prepositional phrase and an
adjectival phrase respectively.

Now in order to be able to produce sensible natarejuage descriptions of Grail concepts we have to
annotatd the individual concepts of a Grail model with thdividual lemmas of the natural language,
and in addition we have to annotate the concepbutation rules of a Grail model (represented by so-
calledstatementsto the phrase and word combination rules (the grarhof the natural language.

The example above requires e.g., that the Grategtfrracture maps to the English nodracture and

the Grail concepFemuris annotated with the English notemur. Next to these concept annotations the
example above requires that the Grail combinatiba K hasLocation Ys annotated with

“prepositional phrase + prepositiafi’ such that the phrase that expressésacture) is modified by a
prepositional phrase that expressgsf the femur.

Note that this rule does not imply that e(§emur which isLocationOf Fracturean be expressed as
femur of the fracturelnstead, to describe this example concept prgpeslld require an additional
annotation that maps$ which isLocationOf Yo a noun phrase describiXgfemus) which should be
modified by an adjectival phrase describin{fractured to produce the more acceptafstctured
femur

In order to provide for a multilingual generatoatlis easy to extend and to maintain we chosedigade
a generic (language independent) generation afgoribat applies language specific grammars and
lexicons to produce utterances in multiple langsayéithin the Galen In Use project the emphasis is
on the generation of noun phrases but we felttttegenerator should also be able to produce coenple
sentences. We chose Segment Grammar (Kempen, K88ifien ea 1987) as the linguistic framework,
because it has shown to be well-suited for bothinahtanguage generation and interpretation.

The rest of this paper is structured as followstiea 2 focuses on syntactic issues of the natural
language generation process. Semantic issues altandth in section 3 where we describe the wayilGra
concepts are ‘translated’ into phrases. Then se€tidescribes how to produce the language specific
data required for a particular language (grammkesrdemmas/word forms required and semantic
mappings). In section 0 we describe how you cartheselevelopment and maintenance tools to use these

3 Traditionally, within the GALEN and GALEN-IN-USErpjects the ternfinguistic annotationss used to refer to
the semantic mappings between a Grail model aratuaal language.

data to build your own language and semantic nsodhally section O provides a detailed descriptio
of the implementation of the natural language gati@n modules.

2 Syntactic issuesin Multilingual natural language generation

Strictly speaking, the term ‘multilingual’ appliés any natural language generator that is able to
produce phrases in at least two natural langudémsever, in my opinion a truly multilingual

generator should consist of a single generic (laggundependent) component and language specific
components for each of the individual languagesi@l, A major design goal of the present projetd is
limit the language specific components of the gatwerto the language specific data that residaen t
lexicon and the grammar. As a consequence the gimeshould have no need for any language specific
algorithms, and extending the generator to coveexara language would only require the specificatio

of the grammar and a lexicon.

Although the focus of the present paper is on gair, the next sections are also applicable to the
natural language analysis process. The applicafigeneric multilingual generation and analysis
algorithms requires a generic linguistic framewtiréit can support the complete range of syntactic
phenomena that are present in each of the individnguage fragments to be covered. This framework
is described below in implementation independemhse The actual ROIS implementation of the
framework is presented in section 3.1.

2.1 Generic linguistic framework

This section goes into the entities and relatitras form the building blocks of the Generic Lindigs
Framework. Why and how these objects are usedeitlescribed in the sections that follow. The dbjec
used within the generic linguistic framework aréirded in table 1. We distinguish eight elementary
entities and one composite entitity. The elemengatities arelemma categoriegeatures feature

values lexeme categoriesexemesspellings phrase categoriesyntactic functiongpositionsand
segmentsPlease observe the following naming conventitms:names of lemma categories, phrase
categories, and positions start with a capitaétettemma- and phrase categories can also beedftr
by their abbreviations which are presented in #tdetwithin parentheses. The names of the other
elementary entities start with a small letter.

Feature-value pairs are composed of a featureaaradlie. They are represented by joining together t
feature and the value using an equals sign For examplepumber=singular Segments are composite
entities which are defined by a triple consistifig @hrase category, a syntactic function, andragst
or lemma category. A segment’s name is formed ioyrjg together the names of its elements using
hyphens as indicated in the table. The role of segswill be described in more detail in sectidB. 2.

lemma category Noun(N) | Adjective(ADJ) | Article (ART) | Preposition(PREB | Adverb(ADV) |
ProperNamgPN) | CoordinatingConjunctiofCOOCON | SubordinatingConjunction
(SUBCON | MainVerb(MV) | AuxiliaryVerb(AV) | CopulaVerb(CV) | CardinalNumber
(CARD | PersonalPronoufPERSPRQ| PossessivePronolffOSSPRO) |
DemonstrativePronou(DEMONPRQ | InterrogativePronoun(INTERPRO) |
IndefinitePronoun(INDEFPRQ | ReflexivePronoufREFLPRO) |ReciprocalPronoun
(RECIPRQ | RelativePronoufRELPRQ

feature number | gendeydefinite| case| prenominal| inflection | affixRole | countable |
determinable | tense | aspect | participle | sgtitallyTransitive | syntacticallyReflexive
reciprocal | separableVerb | diminutiveForm

feature value singular| plural | masculing feminine| neuter | + (positive) | - (negative) | nominative
genitive| dative| accusativd translative| partitive | essive inessive adessivd illative |
allative | elative| ablative| instructive| abessive | prefix | infix | suffix | past | presgnt
future | perfect | imperfect | presentParticiplpdstParticiple

lexeme category <string> (e.g.pbasic noununinflected adjectivglural noun

lexeme <spelling>

spelling <string>

phrase category NounPhraséNP) | PrepositionalNounPhras@PNP)| AdjectivalPhras€ ADJP) |
AdverbialPhraséADVP) | SentencgS)

syntactic function | head| modifier | functor | determiner] prefix | postfix | subject | directObject |
indirectObject | complement | auxiliafyarticle | predicate | conjunctionElement

position

112]3|4|5]6]7]|8]9

feature-value pair

<feature>, =, <value>

segment

<phrase category>, -, <syntactic function>,-,<phmasategory> <lemma category>

table 1 Elementary en composite entities withie gleneric linguistic framework

The entities of the linguistic framework are invadvin the following relations (table 2):

lemma category feature n, n
lemma lemma category n, 1
lexeme category lemma category n, 1
lexeme category feature-value pair n, n
lexeme lemma n, 1
lexeme lexeme category n,1
lexeme spelling n,1
phrase category feature n, n
segment feature n, n
segment position n,1
number singulaf plural n,1
gender masculingfeminine| neuter| nonNeuter n, 1
definite +| - n, 1
case nominativggenitive| dative| accusativd translative| partitive | essive n, 1
inessive adessivd illative | allative | elative| ablative| instructive|
abessive
prenominal + n, 1
inflection +]- n, 1
affixRole prefix infix | suffix n 1
countable + |- n, 1
determinable + |- n, 1
tense past | present | future n, 1
aspect perfect | imperfect n,1
participle presentParticiple | pastParticiple n,1
syntacticallyTransitive +]- n,1
syntacticallyReflexive +]- n,1
reciprocal +]- n, 1
separableVerb +]- n, 1
diminutiveForm + - n, 1

table 2. Possible relations between syntacticieaténd corresponding cardinality values

Informally the contents of the table is describedadlows: lemma categories (e.ggun)havezero or
more features (e.qqumbej. Lemmas (e.gljver) have exactly one lemma category (egur). Lexeme
categories (e.gplural nour) have exactly one lemma category (engur) and zero or more feature-
value pairs (e.gnumber=plura). Lexemes (e.glivers) have exactly one lemma (eliyer), exactly one
lexeme category (e.gpjural nour) and exactly one spelling (e.g., “liversBhrase categories (e.ggun
phrasg have features (e.gaumbe}. Segments (e.gnoun phrase-head-nouhpve zero or more features
and a position. In addition, not all combinatiofi$eatures and feature values are legal featungeval
pairs. They can only be combined in the ways irtditan table 2.

2.2 Language Specific components

The generic linguistic objects and relations defiresection 2.1 are used to define a grammar and a
lexicon for a particular language fragment. Therdeébn of the grammar precedes the creation of the
lexicon as the grammar specifies first, which feagupossibly apply to the individual lemma categ®ri
and second, which lexeme categories are assoeiéttethe lemma categories and what their feature-
value pairs are.

2.2.1 Grammar specification

The specification of the grammar of a particulargaage involves the following: (the second and the
third item in this list are optional).

¢ Specification of the features associated with lenamé phrasal categories, e.g., an English grammar
could specify thaNounhas the feature namedmber whereas in a Dutch gramnmidounwould
have the features namgdnderandnumber

¢ Specification of subcategories of lemma and phcasegories, e.g., the definition of a German
grammar requires addin@enitiveNounPhrasas a subcategory to the phrase cateblogynPhrase

¢ Specification of the default features-value pafrparticular lemma and phrase categories, e.g., a
sensible default feature-value paimftdunPhraseén many grammars could bease=nominative

¢ Specification of the lexeme categories that arecated with the individual lemma categories. Each
individual lemma category (e.d\Noun) has a lexeme category that represents its basit f
(basic:noun, and possibly additional lexeme categories tbptasent its inflected forms (e.g.,
plural:noun). For example, in English the basic form of theea categorjNounhas the feature-
value paimumber=singulay and in Dutch the basic form of the lemma catedaljectivehas the
feature-value pairsumber=singular, definite=; andgender=neuter

¢ Specification of the segments that constitute thesrof syntax of the language, e.g., by definhmgy t
segmentNounPhrase-head-Nouassigning it to positiorb, and specifying its shared features
gender, definiteandnumber

2.2.2 Populating the Lexicon

After the syntactic features that apply to the wdlial lemma- and phrase categories have been
specified, and the lexeme categories have beenatkfthe lexicon can be populated. This means that
lemmas and lexemes and their features are addbad texicon. For example, we could add the noun
lever (liver) to a Dutch lexicon. The syntactic categofyhis lemma isxounand itsgenderis
nonNeuter A Dutch noun has two lexeme categories, onegesent its basic forrngmber=singular)
and one to represent its plural fornu(nber=plura). So the noumeverhas two lexemes: the basic form
(number=singula) spelledever, and the plural formnumber=plura) spelledievers Note that the
syntactic category and the feature-value paire®fémma are inherited by its lexemes.

2.3 Syntactic tree formation in Segment Grammar

Below | will provide a more detailed account ofgseents and how they are used within Segment
Grammar to create constituent structures of natarguage phrases. Within the linguistic community
constituent structures of many different sortsc@mmonly used to describe the syntactic structfire o
natural language phrases. Both in natural langaagéysis and in natural language generation
constituent structures provide a useful intermediapresentation. During the generation process
grammar and semantic rules specify how conceptuadtsres are transformed, first into a constituent
structure and subsequently into a string of wohadé imakes up the output phrase. Conversely during
parsing the individual words of the input phrase @mbined with the grammar and semantic rules to
produce a constituent structure, and subsequenfyoduce a representation of the meaning of the
phrase.

Within the linguistic community many different typef grammars are used such as Lexical Functional
Grammar, Systemic Grammar, Tree Adjoining Gramrvamtague Grammar, Transformational
Generative Grammar, and several Phrase Structana@ars. Segment Grammar shows some
similarities with Lexical Functional Grammar ande@rAdjoining Grammar. It was originally developed
as a performance grammar for human sentence prodwtd comprehension. As such it has been used
to develop models of the human syntactic tree ftiongrocess. There are however several reasons for
adopting Segment Grammar in automatic multilinquethiral language processing . First it has been
applied successfully in the past both in parsetsiamenerators. Second, it is a relatively simple
framework that distinguishes rules of syntactiaature from linear precedence rules. Third, in
comparison with other grammars, Segment Grammatuges syntactic structures that show a close
resemblance to the conceptual structures as wiaseein Grail and other ontological systems.

2.3.1 Syntactic trees

Constituent structure are often presented graghiaala tree (figure 1) . In the following sectadnwill
describe how Segment Grammar is used to producit@nt structures like this. This process isezhll
syntactic tree formatian

Noun Phrase

modifier head modifier determiner
PrepositionalNoun Phrase Noun: AdjectivalPhrase Article:
inflammation | an
determine functor head head
Article: Preposition: Noun: Adjective:
the of liver acute

figure 1 Example of a constituent structur@nfacute inflammation of the liver

2.3.1.1 Segments

Segment Grammar is named after its elementargibgilblocks which are called segments. A segment
is presented visually by a graph consisting of latmeled nodes connected by a labeled arc. Segraents
presented in vertical orientation. The top nodesi$ed theroot of the segment and the bottom node is
called thefoot (see figure 2).

Root

function

Foot

figure 2 Structure of a segment. The top nodelled@oot the bottom node is called foot

The root of a segment is a phrase category, theddlarc is a syntactic function, and the foottisez a
phrase category or a lexical category (see figuselGw).

NounPhrase NounPhrase
head determiner
Noun Article

figure 3 Two example segments

Segment Grammar distinguishes five phrase catefj¢eigy., Sentence, AdjectivalPhrase), fourteen
syntactic functions (e.g. head, modifier) and twedexical categories (e.g., Noun, Preposition).

Using these categories and functions we couldrfimciple) create 5 * 14 * (5 + 20) = 1750 different
segments. However, the grammar of an individuaglege will typically have only around fifty diffeme

4 For purposes that will be explained in more deta#ection XX we do not use the commonly appliadage
categoryPrepositional Phraséut introduce a non-standard phrase category mestEPrepositionalNounPhrase
instead.

segments, and the grammar for a small fragmentariguage like the descriptions of surgical
procedures will only involve around ten segments.

During the tree syntactic tree formation processtances of segments are combined into syntaets tr
by a process called unification. During this precée root or foot of one segment is merged with th
root or foot of another. For example, by unifyimg troots of the two segments of (figure 3)we can
create a simple tree structure (see figure 4).

Noun Phrase

N\

determiner head
Article: Noun:
a infectior

figure 4 Constituent structure after unificationhwb segments

2.3.1.2 Syntactic features

Next to syntactic and lexical categories and syigalcfunctions, Segment Grammar distinguishes
syntactic features (e.qaumber gendej and the corresponding feature valugadular, masculing.

Like other grammars Segment Grammar allows onliageicombinations of features and values. The
syntactic featureaumberfor example is allowed to take the valsasgularandplural but not the value
genitive

The grammar of an individual language specifiescviparticular features may apply to the syntactic
and lexical categories. In English for example reobave the feature number, but prepositions haize no

Whenever two categories are unified the featuraevphirs of these categories will be unified. Fowiit
suffices to state that during that process theethifategory will have the features of both catigpor-or
example if we unify a noun phrase with the featwakie paimumbersingularwith a noun phrase with
case=genitivewe obtain a noun phrase with the feature-valusspaimbersingularandcase=genitive
(see figure 5). Note that feature-value pairs aesgnted in a box connected to the constituent they
belong to.

NounPhrase NounPhrase: number=plural

head determiner

Noun Article

case=genitive
NounPhrase—{ number=plural
head determiner
Noun Article

figure 5 Unifying the noun phrases of the segmantie top produces the syntactic tree at the imotto

2.3.1.3 Feature sharing

Clearly the mechanisms described so far are natgnto account for agreement phenomena that exist
in many European languages. In English sentences#omple, the conjugation of the verb depends
(among other things) of value the person of thgestilphrase (Viz.l removeversus he removeés In
Segment Grammar agreement is realized by a mechamaibedfeature sharingln section 2.3.1.1 a
segment has been defined by a root, a syntactatibomand a foot. To these three elements we agld th
set of featureshat aresharedbetween the root and the foot. For example, aifeahat is shared

between the root and the foot of the English segiNennPhrase-head-Nous number.

When the root and foot share a feature this imgbggefinition) that the value of the feature lof foot
is equal to the value of the feature of the ront sice versa. This means that a change to the dla
shared feature (e.g. as the result of unificatimit)have consequences for both the root and doée df
the segment. For instance, consider the segmeifisclim figure 6. Assume that the shared featets s
of both segments contain the featatenber Before the unification the segmeédounPhrase-head-Noun
has no values for its shared featnuenber(note that the values of shared features are mpregsén a box
that is connected to both the root and the fothefsegment). After unification the value of thatfee
numberof NounPhrase-head-Nou@and consequently ®our) has been set tplural.

NounPhrase NounPhrase

head determiner

number=plural

Noun Article

case=genitive

head determiner

/N

Noun Article

number=plural

number=plural

figure 6 Shared features and unification. Unifioatof the segments at the top
produces the tree at the bottom

The syntactic tree formation mechanisms describddrscover the generation of the basic constituent
structure of the phrases of a language. Note tfatéowe can actually start constructing constituen
structures we have to specify the grammar of gwagliage in terms of the segments and their shared
features. In addition we need a lexicon that spcthe words of the language in terms of theitasstic
category and features. An example of a constitsentture is presented in (figure 7). Note that the
feature values of the individual constituents hiaen left out for presentation reasons only.

NounPhrase

modifier head modifier
PrepositionalNounPhrase Noun: AdjectivalPhrase
inflammation |
det. functor head head
Article: Preposition: Noun: Adjective:
the of liver acute

figure 7 Example constituent tree of the phraserte inflammation of the liver

2.3.2 Word order

Being able to create unordered constituent strastig the first step in producing natural language
phrases, assigning order to the constituent streiésithe next. For this purpose we now introduce
positionas an element of the definition of a segment. Bdw®c principle is quite simple. Tipe@sition of
a segment is aardinal numberThis cardinal number indicates the ordinal poaitdf the foot of the
segment relative to the other children of the afdghat segment. In syntactic tree presentatioas th
position of a segment is presented between parseghest below the label that represents the fomaf
the segment. Below we present an example of fogtiEinsegments including their positions.

NounPhrase NounPhrase NounPhrase AdjectivalPhrase
determiner head modifier head
(position=1) (position=4) (position=3) (position=1)
Article Noun Adjectival Phrase Adjective

figure 8 Example positions of four English segments

If we apply the ordinal positions of the segmerfindéion to the individual branches of the constitu
structure it becomes a constituent tree. The avfitre children of each constituent is determingthie
definition of the corresponding segment (figure 9).

10

NounPhrase

determiner head modifier
(position=2) (position=4) (position=3)

7 N\

Article: Noun: AdjectivalPhrase
an inflammation |
head
position=1
Adjective:
acute

figure 9 Adding order to the constituent structaf¢he phrasean acute inflammation

Given the ordered constituent tree the sequentifdring of the individual leafs can be derived very
easily to produce the phraae acute inflammatian

2.3.3 Word form

Although the example sentences presented so flamglaite all right from a grammatical point of view
this is mainly due to the fact that they are alEimglish which is a morphologically simple language
Consider the Dutch phrasestn acuut ontstekinghich is an ungrammatical translation of the Estgli
phrasean acute inflammatioifigure 9). This phrase is ungrammatical as thieflected form of an
adjective @cuu can only be used in indefinite singular neutenmphrases. All other noun phrases
require the inflected form of the adjective. Thastituent tree ofen acute ontstekir@n acute
inflammatior) is presented in figure 10.

_..--» NounPhrase--..

_ . : number=singular
number=singular : gender=masculine
definite=negative | yeterminer head modifier definite=negative

number=singular
. gender=masculine :
Article: -.._ Noun: AdjectivalPhras
een " ontsteking)

number=singular
head gender=masculine
definite=negative

Adjective:
acute

figure 10 The constituent tree of the Dutch phraset acute onstekirigcluding the feature value pairs
of the individual constituents.

In the example we see that the adjectizatedoes not posses the feature-value pairs thatyjustage of
the uninflected form, hence the inflected form Wil selected.

3 Generating phrases to describe Grail concepts

In section 1.3 we explained that producing natlamafuage descriptions of Grail concepts requinss, fi
that the individual concepts of a Grail model ana@tated with the individual lemmas of the natural

11

language, and in addition, that the concept coitippgules of that Grail model are annotated vitik
phrase and word combination rules (the Segment @i@nof the natural language. In section 2 we
described a linguistic framework that enables ugpresent Segment Grammars and lexicons for
multiple languages. In section 3.1 we will firstsdegbe the linguistic annotations that represeat th
semantic relations between Grail concepts on tleehamd and linguistic objects (lemmas, segments) on
the other. Then, in sectidfrror! Reference source not found.we will go into two standard modeling
schemes that are commonly applied in Grail, thatiire the introduction of the notion of filtering.
Finally, section 3.3 presents a description ofrthtural language generation algorithm.

3.1 Annotating grail concepts with linguistic entities

3.1.1 Concept annotations

Producing a natural language phrase that lingailtfirealizes a Grail concept requires a mod¢hef
lexical semantics of the language. This model dlesshow particular grail concepts can be expressed
by a lemma in a particular language. For exampeGhail concepLiver can be expressed by the Dutch
noun lever. This type of annotation is calleccancept annotation Concept annotationsypically

involve mappings to lemmas that are traditionadiiferd content words, i.e., nouns, adjectives, dubser
and verbs.

Note that concept annotatiooan apply to both primitive and composite Grail @gpts. In both cases
the lemma mapped to is supposed to describe thepbonompletely, that is, including all of its defig
criteria.

3.1.2 Relation annotations and syntactic frames.

In anticipation of the description of the natur@hdjuage generation algorithm (in section 3.3) you
should know that a composite Grail concept candseribed by adding modifier phrases to a natural
language phrase that describes one of its formmadstors. Every defining criterion that distinguistiee
concept from this ancestor (often caltegicin this contextwill be expressed as a modifier phrase, c.f.,
(Fracture which hasLocation Femur) section 1.3. How a certain criterion can bprezsed using
natural language is determined by the so-caliation annotationsmappings frontonceptual
relationsto syntactic frame the language. Below | will go into relationsdasyntactic frames
respectively.

3.1.2.1 Relations

First, recall that composite Grail concepts aréngef by a non-composite concept caltedeand a set
of defining criteria #ttribute-valuepairs). A defining criterion can be said to represa particular
relation between two Grail concepts. For example the @atalledhasLocatiorbetween the concepts
(Fracture which hasLocation FemusndFemur In the following sections relations will be prased as
triples of the form(<topic concept>, <attribute>, <value concept>jor example{Fracture,
hasLocation, Femur)Note that subsumption relations may exist betwedations. For example, the
relation(Fracture, hasLocation, Femui3 subsumed by the relatiofiDisorder, hasLocation, Bodypart).
Note that relations should be distinguished frorail3&statements. In Graiensiblestatements are the
rules that specify which concepts and attributeslmcombined into a composite concept, and
grammaticalstatements specify which sensible statements bnweal. Using relation annotations
instead of statement annotations to specify hotatedefining criteria are to be realised linguiatly
allows the annotation of relations that have ntexparts agrammaticalor sensiblestatements in the
CORE model.

3.1.2.2 Syntactic frames

In principle, syntactic frames are syntactic cdnstits of varying complexity. A collection of Engfii
example frames is presented in figure 11. A frame dn exactly two phrase categories that will béedi
with other constituents during the syntactic traerfation process. They are called theic constituent
and thevalue constituentThe are presented in figure 11 in italics andllfate respectively.

12

In its most simple form a syntactic frame consiéta single segment e.g., the left most frame:
NounPhrase-modifier-AdjectivalPhrasks topic constituent isSlounPhraseand its value constituent is
AdjectivalPhrase

(@) (b) (© (d)

NounPhrase NounPhrase NounPhrase NounPhrase
mod|ifier motlifier motlifier motlifier
Adjectivr!d Phrase Noun |Phrase Prepositional!\lounPhrase PastP|articipIeS
fu n|ctor head/\modifier

| / N\

Prepositionof MainVerb:mix PrepositionalNounPhrase

functor

Prepositionin
figure 11 Example frames for English. Topic consitts are in italics, value constituents in bojgkety
face

As illustrated in figure 11(c and d), more complieames may involve additional segments. The role
played by syntactic frames is best illustrated inggample. Consider again the condgpacture which
hasLocation Femur)Suppose that in English the concEmctureis annotated with the nodracture.
As aconsequence the concdptacture can be described by the constitudounPhrase-head-
Noun:fracture In addition, suppose that the relati@isorder, hasLocation, Bodypartwhich subsumes
the relation(Fracture, hasLocation, Femyr)s annotated with the frame in figure 11(dbunPhrase-
modifier-AdjectivalPhraseThis relation annotation implies that the comfgsbncept’s criterion
hasLocation Femucan be expressed by unifying the constituent d@ag Fracture with the topic
constituent of this frame. In addition, an adjeatigphrase describing the value of the criterion
(AdjectivalPhrase-head-Adjective:femagrahn be unified with the value constituent of théne. This
process is illustrated in figure 12. The framerisspnted in a square box.

13

4)
Fracture NounPhras NounPhrase |-
head modifier

/

Noun:fracture

\

AdjectivalPhrase —|

(Disorder, hasLocation, BodyPart)

AdjectivalPhrase

head
| -~ Femur

\ Adjective:femoral /

NounPhrase

/\

head modifier

/ N\

Noun:fracture AdjectivalPh (Fracture which
oun-ractire JeCIV|a fas€ 1 hasLocation Femur)

head

\\ Adjective:ferw

figure 12.Role of a simple syntactic frame in thetactic tree formation process

Of course, the phragemoral fractureis not the only sensible realization of the con¢Epacture which
hasLocation Femur)This concept could also be expressed by the plfrasture of femurThis would
require an annotatioof (Disorder, hasLocation, Bodypanjith the frame in figure 11(c). The role of
this frame in the syntactic tree formation prodssHustrated in figure 13.

14

(Disorder, hasLocation, BodyPart)

\
NounPhrase

\

modifier

AN S

Noun:fracture PrepositionalNounPhrase PrepositionalNounPhrase

/ \

E : . functor head
racture / \

Preposition:of Noun:femur

‘ Fe:mur
NounPhrase \
/ N\

head modifier

/ \

Noun:fracture PrepositionalNounPhrase

/\

functor head

\\ Preposition:of Noun:femy

(Fracture which hasLocation Femur)

figure 13.Role of a complex syntactic frame in slyatactic tree formation process

3.2 Modeling schemes and filtering

Before | can go into a more detailed descriptiothefnatural language generation algorithm a little
more needs to be explained about the so-catledeling schememndfiltering. First, the current CORE
model applies composite concepts in a number ofistal ways to represent features, processes and
surgical procedures to work around certain limitiasi on the expressiveness of the Grail formalism.
Although these and other, similar, representatamesessential to the usability of the CORE madel,
many cases they would produce natural descriptimaisare simply too verbose to be useful. In this
section | will describe these structures, why tiveye introduced, and how we can use the filtering
mechanism to produce less verbose natural langoagiee concepts involved.

3.2.1 Feature-State scheme

In early versions of the CORE model, a conceptsuiees were represented by simple criteriaFor
examplea severe inflammationsed to be represented by:

(Inflammation which <hasSeverity severe>)
Although this worked fine in many cases, it becaamablematic when other things concerning the
severity of the inflammation (e.g., the method usetheasure it) were to be represented. In order to

handle this, features are no longer representedthbiputes but by concepts. E.g., the feataeerityis
represented by the conce&veritywhich is a descendant of the concéfgature The value of the

15

feature is represented by particularizing the featsing the attributeasStateA severe inflammation ,
for example, will be represented by:

(Inflammation which <hasSeverity (Severity which < hasState severe >) >)

Constructs like this are useful e.g., to represknical findings as in:

(Inflammation which <hasSeverity (Severity which < hasState severe
asMeasuredBy methodX >) >)

In order to express criteria modeled like this pecal arrangements would have to be made if the
conceptgSeverity which < hasAbsoluteState mild, ¥peverity which < hasAbsoluteState moderate >)
and(Severity which < hasAbsoluteState severevoilld be annoated with e.g., the lemmalective:
mild, Adjective: moderatandAdjective: severeespectively. However, it would be much more
convenient to map these lemmas directly to theviddal severity valuemild, moderate andsevereand
still produce the same output.

3.2.2 Surgical Procedures

To represent surgical procedures a modeling sclsamitar to the feature-state scheme is used. A majo
modeling problem here was to account for the faat surgical procedures typically involve multiple
(apparently more primitive) surgical deeds sucheasoval of abscess involving partial reconstructaf
bone tissueAs Grail does not provide built-in primitives handle conjunctions, the attributes
isCharacterisedByndisMainlyCharacterisedByave been introduced to produce concepts such as
presented in figure 14.

(Process which <
hasClinicalRole SurgicalRole
isMainlyCharacterisedBy (Removing which <
hasClinicalRole Surgical Role
actsSpecificallyOn Absce ss >)
isCharacterisedBy (Reconstructing which <
hasClinicalRole SurgicalRole
actsOn Bone >) >)

figure 14 Modeling scheme to represent surgicalcgdures

The second problem with the representation of satgirocedures was that Grail has no built-in
mechanism to handle negations, so surgical proesdhat involve the exclusion of a particular deed
could not be represented easily. For this purposehar scheme has been introduced. This layer wraps
up an individuaSurgicalDeedn a composite concept using the conc&ggormanceor
NonPerformancand the attributesEnactmentOfo produce concepts like the one shown in figiie 1

(Process which <
hasClinicalRole SurgicalRole
isMainlyCharacterisedBy
(performance which <
isEnactmentOf
(Removing which <
hascClinicalRole SurgicalRole
actsSpecificallyOn
(Abscess which <
hasLocation ExternalEar
hasSeverity (Severity which <
hasAbsoluteState s evere >) >)
hasExtend complete >) >)
isCharacterisedBy
(nonPerformance which <
isEnactmentOf (Incising which <
hasClinicalRole SurgicalRo le
actsSpecificallyOn Pinna >)>)>)

figure 15 The use of wrapper concepts in the canedpepresentation of a surgical procedure

Although these modeling schemes are very usefalrapresentation mechanism, they complicate the
natural language generation proces considerabhye¥ample, a natural language phrase that describes
the surgical procedure presented in figure 15straightforward manner surgical procedure that
involves performing complete surgical removahakevere abscess of the external ear and that
involves not performing surgical incising of theriale. Although this phrase accurately describes the
concept, in most contexts a less verbose desanigtich agomplete removal of a severe abscess of the

16

external ear without incising of the auriokll be preferred. However, in order to producetsiess
verbose phrases we would have to eddcept-lemmanappings for all concepts of the form

(Process which < isMainlyCharacterisedBy (perforrmamwhich < isEnactmentOf X >) mhich

would be very inconvenient and time consuming.dadtwe would prefer to add such mappings only to
the descendants 8urgicalDeedhat could be substituted fi.

3.2.3 Unwanted criteria

Next to the modeling schemes des cribed aboveC@RE model features certain defining criteria that
would produce unwanted results when expressedéogdtural language generator. These criteria
involve e.g., tha attributepplicationAttribute RoleDesignatingAttributand their descendants.
Although they distinguish a concept from its anoesthey are not suppose to have any effect owdye
the concept is described using natural languagesi@er for example, the concéftlosing which
hasClinicalRole SurgicalRole)t could be described very well by the phrasggical closing but in
many contexts the adjectigergicalwould be redundant and the phrasesingis preferred. In principle
this could be handled by annotating both concefits tive nourclosing However, if we prefer never to
express the difference between general actionsasidpening, closing, drilling, shaving etc. aneirth
surgical counterparts we would have to add conaepbtations for each of them. For this reason we
introduce the notion adfuppressingvhich will be explained in section 3.2.4.2.

3.2.4 Tagging and filtering

To provide a solution to the problems concerningleting schemes and unwanted criteria described in
the previous sections we use the notiomsrapperandsuppressionaggingandfiltering.

3.2.4.1 Wrapper tagging

The natural language generation problems with festure-state and surgical procedure concepts are
solved by a single mechanism. First, the relatiomslved in these modeling schemes are tagged-as so
calledwrappers Second, the natural language generator appfiteramechanism tanwrapconcepts
that involve such a wrapper relation. Tagging aaderrelation(Topic, attribute, Value)as a wrapper
implies tagging all the relations that involve dastants offopic attribute, and Valueas a wrapper

For example, assume that the relati@greature, hasState, Stateds been tagged as a wrapper. The filter
mechanism will unwrap the concgeverity which < hasAbsoluteState severéaroduce the
conceptsevere asSeverityis a descendant Bkature hasAbsoluteStatis a descendant bfasStateand
severds a descendant &ftate

The filter mechanism is also applied to the sulgicacedures described in 3.2.2. Recall that safgic
procedures involve two relation®rocess, isMainlyCharacterisedBy, performanaejl(Enactment,
isEnactmentOf, SurgicalDeed)o unwrap a surgical procedure requires taggotg kelations as
wrappers. During the natural language generationgss the filter mechanism wil unwrap the concept
(Process which < isMainlyCharacterisedBy (performamwhich < isEnactmentOf Removalir)two
steps. First it unwraps the concepfpierformance which < isEnactmentOf RemovalSybsequently,
(performance which < isEnactmentOf Removaissinwrapped to produce the concBgimoval
(performanceds a descendant &nactmentandRemovalis a descendant &urgicalDeejl

3.2.4.2 Suppression tagging

In order to prevent the linguistic realisation eftain criteria for certain concepts, relations ban
tagged to bsuppressedror example, in order to prevent the expressfdahecriterion
hasClinicalRole-SurgicalRolm the example presented in 3.2.3, the relat@urgicalDeed,
hasClinicalRole, SurgicalRoléy tagged as a relation that is to be suppresdealfilter mechanism will
simply hide the criteriomasClinicalRole-SurgicalRolftom the list of defining criteria diClosing
which hasClinicalRole SurgicalRole)

3.2.4.3 Example

To illustrate the filter process figure 16 showepsby step how the concept at the top is filteped t
produce the concept at the bottom.

17

(Process which <
pl aysCli ni cal Rol e Surgical Rol e
isMainlyCharacterisedBy
(performance which <
isEnactmentOf
(Removing which <
pl aysCli ni cal Rol e Surgical Rol e
actsSpecificallyOn
(Abscess which <
hasLocation ExternalEar>
hasSeverity (Severity which <
hasAbsoluteState severe >) >)
hasExtend complete >) >)
isCharacterisedBy
(nonPerformance which <
isEnactmentOf (Incising which <
pl aysCli ni cal Rol e Surgi cal Rol e
actsSpecificallyOn Pinna >) >)

(Process which <
isMainlyCharacterisedBy
(performance which <
i sEnact ment Of
(Renpvi ng which <
act sSpecifical lyOn
(Abscess which <
hasLocati on External Ear>
hasSeverity (Severity which <
hasAbsol ut eSt at e severe >) >)
hasExt end conplete >) >)
isCharacterisedBy
(nonPerformance which <
isEnactmentOf (Incising which < actsSpecif icallyOn Pinna >) >)

(performance which <
isEnactmentOf
(Renpvi ng which <
act sSpecificallyOn
(Abscess which <
hasLocati on External Ear
hasSeverity (Severity which <
hasAbsol ut eState severe >) >)
hasExt end conpl ete >)
isCharacterisedBy
(nonPerformance which <
isEnactmentOf (Incising which < actsSpec ificallyOn Pinna >) >) >)

(Removing which <
actsSpecificallyOn
(Abscess which <
hasLocation ExternalEar
hasSeverity (Severity which < hasAbsol uteState severe >) >)
hasExtend complete
isCharacterisedBy
(nonPerformance which <
isEnactmentOf (Incising which < actsSpecif icallyOn Pinna >) >) >)

(Removing which <
actsSpecificallyOn
(Abscess which <
haslLocation ExternalEar
hasSeverity severe >)
hasExtend complete
isCharacterisedBy
(nonPerformance which <
isEnactmentOf (Incising which < actsSpecif icallyOn Pinna >) >) >)

figure 16 Unwrapping wrapped concepts

3.3 The Natural Language Generation algorithm

The input to the generation algorithm consistadbrail concept, a target language, a parameter tha
specifies whether or not articles should be used,aaparameter that specifies the intended phrase
category. The output is a phrase that expresseslieconcept in the target language, and sonte err
diagnostics .

18

The concepts in a Grail model represent classebjefts rather than individual instances. For eXamp
the concep(Fracture which < hasLocation Femur ®joes not refer to a particular femur fracture
occurring in a particular patient. Instead it refey any fracture of any femur. Grail concepts espond
with typesrather than withtokens As a consequence the natural language geneiagonthm

produces phrases that have generic reference.ougthmost European languages have multiple ways of
expressing generic reference the present genexppbies the singular indefinite form. References to
named parts of the body are realized by the simglgdfnite form.

The output phrase is produced in three steps ige®fl17). First, a constituent structure is getestdor
the input concept. Then the constituent structsiserialized to produce a sequence of lemmas.I¥inal
the spellings of the appropriate word forms ofldgremas are concatenated to form the surface string
These steps are described in the sections 3.3.B818 .

Grail concept (Inflammation which <hasChronicity acute >)

Constituent structure
......-; Noun Phrase.....

Number: singular
Gender: masculine

Number: singular

Definite: . ; . inite:
elinite: - no Determiner Head Modifier Definite: no
Number: singular
Gender: masculine
Article: Noun: Adjectival Phrase
een " ontsteking -
Number: singular
Head Gender: masculine
ea Definite: no
Adjective:
acuut
Lemma sequence
- Number: singular -
Number: singular Gender: masculine Number: singular
Definite: no Definite: no Gender: masculine
Article: Adjective: Noun:
—_—) .
een acuut ontsteking

Surface strin
9 “een acute ontsteking”

figure 17 From Grail concept to natural languageaph

3.3.1 Generating the constituent structure

The algorithm used to produce a constituent stradimdescribe a Grail concepbnceptusing a phrase
of typePhrase categonn a languagéanguages described below in pseudo code. The basic ihgor
consists of two procedures that call each othamrsaeely. The first is calleGenerateConstituenthe
otherExpressCriterionVariable names are presented in italics.

19

PROC GenerateConstituent (Concept, PhraseCategory, Language, AddArticles): Constituent
1) LemmCategory : =

SyntacticCategory(foot(GetSegment(Language, PhraseCat egory, head, *)));
Lemma := GetAnnotation(Concept, Language, LenmmCat egory);
IF Lenma EQUALS NIL
THEN Base :=filter(base(Concept))
Criteria:=filter(criteria(Concept))
Look for concept annotations (with category LemmraCat egory) at ancestors of
Concept with a base identical to Base.
IF annotations exist
THEN Ancestor := nobst specific ancestor with annotation;
Lenma := GetAnnotation(Concept, Language, Ancestor);
Criteria :=RemoveCriteria(Criteri a, GetCriteria(Ancest or);
ELSE Look for annotations at ancestors of Concept that have a
base other than Base
IF annotations exist
THEN Lenma := the lemma that maps to the most specific ancesto r
Criteria:=NIL
ENDIF
ENDIF
ENDIF
2) Segnent | nst ance := CreateSegmentinstance(Phr aseCat egor y, head, Lenmma)

3) Constituent :=root(Segnent | nst ance)
4) FOREACH tuple< Attribute, Value>IN Criteria DO

ExpressCriterion(Language, Concept, Constituent, AddArticles, Attribute, Value)
ENDFOR
5) IF AddArticles = TRUE AND
GetSegment(Language, NounPhrase, determiner, Article) NOT EQUALS NIL A ND
Const i t uent has no branch of the form [Consti tuent, determiner, *] AND
Const i t uent has no feature determ nable: -
THEN Determ nerConstituent :=
CreateSegmentinstance (NounPhrase-determiner-Ar ticle);
Const i t uent := Unify(Constituent,root(DeterninerConstituent);
ENDIF
6) RETURN Constituent
END PROC
PROC ExpressCriterion(Language, Concept, Constituent, AddArticles, Attribute, Value)
1) Franme := retrieve the most specific frame for the relation (Concept, Attribute,
Val ue) in Language, such that the SyntacticCategory(TopicConstituent(Fr anme))
is compatible with the SyntacticCategor y(Consti tuent).
2) Franel nst ance := Instantiate(Fr ame);
2) Val ueConstituent Cat egory := SyntacticCategory(ValueConstituent(Fr anmel nst ance));
3) Val ueConstituent =
GenerateConstituent (Val ue, Val ueConstituent Category, Language, AddArticl es);
4) IF Val ueConst it uent NOT EQUALS NIL
THEN Unify(Consti tuent, TopicConstituent(Franel nst ance));
Unify(ValueConstituent(Franel nstance), ValueConstituent);
ELSE Repeat from step 1 with other frame;
ENDIF
END PROC

3.3.2 Serializing the constituent structure

The input to this process is an unordered congtitsieucture. The constituent structure is proaksse
starting from the root. The root and its descenslant recursively expanded in the order that isipe
by thepositionsof the segments that were used to create the lbeanblote that there is a special way to
handle segments that involve the same basic simtategories and functions but differ with respect
their serial position. In French for example, theéadilt serial position of the segmeé¥iP-modifier-ADJP
is after the segmemP-head-NounHowever, some French adjectives are prenomirsabaul
postnominal modifiers. In order to handle this ¢fe@eric language model allows the definition of
segments based on other segments, e.g., the seiRanbdifier-PrenominalADJRs a child tdNP-
modifier-ADJP This segment can be defined to have a serialipesvhich comes befordP-head-

Noun Note thatPrenominalADJHs an subcatategory 8DJP with the feature-value pair
prenominal=+ Now every adjective in the lexicon that has fe&ure as well will automatically turn up
before the noun. Of course the grammar must erthbléeaturgprenominalfor the categorieAdjective
andADJP, andprenominalmust be a shared feature of the segmdniP-head-Adjectivan order to
enable th@renominalfeature of a particular adjective to pass upg@érent constitue®DJP.

20

3.3.3 Producing the surface string

The input to this process is a sequence of lemFiest, every lemma in the sequence is substituyed b
the spelling of one of its lexemes that has thbetrgyntactic features. The individual spellings are
concatenated, inserting spaces as required. Nespalt be inserted between a word and its prefotes
suffixes. A word can become a prefix or suffix thgb the featuraffixRolewhich takes one of the
valuesprefix, infix, or suffix In the grammar this requires first, to enabledfiexRolefeature for the
lexical and phrasal categories involved (epunandNP), second, the definition of a phrase category
with that feature e.gRrefixNP, third, the definition of a segment which triggehe affix (e.g.NP-
modifier-PrefixNB, and fourth, addingffixRoleto the set of shared features of the approprédedl
segment NIP-head-Nounin order to pass it down to the lexical level.

Finally the surface string should be processeallemguage dependent way that accounts for phereomen
such as the usage @fersusanin English and the contraction & intol’ in French depending on the
pronunciation of the word that follows, and ethe contraction of two words suchde leintoduin

French andn hetinto er in Dutch. As the current version of the generatiofiware has no built-in
provisions for substitutions like this, they shobklimplemented by the client application itself.

4 References

[Kempen 87] Kempen, G. (1987) A framework for incesrtal syntactic tree formation. In:
Proceedings of the Tenth International Joint Cafee on Artificial
Intelligence (IJCAI'87), Milan.

[Kempen ea 87] Kempen, G., and Hoenkamp, E. (1987)incremental procedural grammar

for sentence formulation. Cognitive Science, 111,-2868.

21

Generating Multilingual Natural Language
Expressions for Grail Concepts

Part I1: I mplementation

Wim Claassen
University of Nijmegen
NICI

22

Contents

[0 o [0Te: o] VPP PO P P PP PPPTPTN
2 Using the ROIS system deVEIOPMENT Kit.....cceumuee noiierieeieiieisiiiiiiiasseseeeeesmmmmaeseeeeeeeaeevasrsne s aaaaaeeaaeasanesnnnes
220 T @ oY=t B 1/ o 1=
2.2 Network Programming Language............ .o .ve..

2.3 NPL modules used in the current implementation................

3 Language MOEIS.......uuuurieireeeeeeee e e e et aeeaaeeeas
3.1 Representation of DaSIiC SYNtACHIC ODJECES wmmmumveevevvriiiiiii e e et eeeee e e e e e e e e eeaee e aae e s
3.2 Representation Of GIAMIMAISu. i eeeeeieeeeeeeeeee et iee et ta e e aseeeeeaeammam e eseeeeeaesesasseensaasaneaaeeaaeeeseesnnnes
3.3 Representation of lexicons.............
3.4 Representation of Syntactic trees...........
3.5 Representation of syntactic frames
3.5.1.1.1.1.1.11 Overview of the implementationhef generic linguistic framework

4 Representation of relations iN Grallcceeeuuieiiiiiiiii e e cmre e e e e e e e e e et aan e aeeaaeaaeaeans

5 Linguistic annotation of Grail MOUEISc.uuuuuriiiii i s emmmm e e e e e e e e e e aneeaeeaeeee e

6 Filtering: criterion SUPPreSSIiON ANU WIAPPEE S e eeeeeeerrerrureitniesaasaseesaeseeesaaaaeseeeeseessnnsss s aaseaaeeeeseseesennnns 11

7 Implementation of the generation algorithm...
A R C =T o 1=T = (PP PP RRP PP
2S-SR PP PO UUPURRN
7.3 SEMANTICS .eiiiiei ettt et e e e e e bbbttt et e e e e e e ook kbt e et mmm e R bR bbbt e bt e te £ e e a4 e e e en b be e beeeeamnnn e

8 API of Natural Language Generation modules
8.1 FRAUIreS ... i e
8.2 Lexicon
8.3 Segments
8.4 Constituents
R} = N GO OO PO UPPURN
8.6 Frames.........ccccvueennnnn.
8.7 GrailExtension
8.8 Semantics
e CT=T o =T = (=PTSRS P UPTPP R

9 External/interchange formats for Language modats Semantic modelseieii e vevveiiee e 13

1 Introduction

The documentation on the ROIS based Natural Larey@Gmerator developed within the context of the
Galen In Use project consist of three papers: (hearetical paper on the design of the generépmr
description of its implementation, and (3) a mdrléscribing how the generator is to be used.

This paper descibes the ROIS implementation ofjrerator.

2 Using the ROI S system devel opment kit

This section provides an introductory overview @IR. For a thorough description of ROIS please
consult the document ROIS: a knowledge server (earHaring, 1996). ROIS is a server application
that provides support to create and manipulate ngata structures that can be represented abgrap
The ROIS server is programmed usMgtwork Programming LanguaddlPL). The ROIS development
tool kit consists of th&®OIS servertheROIS debuggehe ROIS Network Programming Language
Compilerldefix , andMole which is a ROIS client application that providdewa-level view on ROIS
graphs, and an interface to call ROIS client taB&3lS graphs are stored in data files that aredall
models

2.1 Object types

ROIS graphs consist of objects of two basic tymdednodesandlinks. There are three types of nodes:
node classedink classesand qualifiers ROISlinks consist of a tail node, a link class, a qualifeand a
head node, often presented as a quadruple (tadl, tio# class, qualifier, head node).

Among many other things, ROIS provides mechanism@heritance, basic inferencing, and type and
cardinality restrictions on link classes. It alsppgorts the creation afistancesof node classes.

2.2 Network Programming Language

The ROIS Network Programming Language (NPL) isregleage that has a syntax similar to Modula 2.
It provides constructs to create and modify objetthe types described in the previous section. In
addition, it provides constructs to search, test salect graphs. ROIS allows users to define their
procedures which are calléasks ROIS tasks are defined within named modules. Jasky call each
other recursively and they can be markediddenor clienttasks. The former are only accessible to
tasks within the same module whereas the lattebeaaccessed (called) by ROIS client applications.
Unmarked tasks are available to all other modudesnot to ROIS client applications.

The ROIS NPL compileldefix compiles NPL modules to produce ROIS Virtual Maeh{RVM) code.
For a description of Idefix please refer to thefildReference manual. A module’s RVM code is loaded
dynamically by the ROIS server when a ROIS cliggl@ation calls a task from that module.

Building a ROIS client application typically invas the following stages:

First the structure of the graphs used to implentembbjects that are relevant in the client
application(s) are defined using Idefix. This isialty done by defining a taskeateModethatadds the
high-level node and link classes, and the quadiftera module’s basic model. Subsequently a nuwiber
creator, selector and destructor tasks will bengefi After compilation the tasks defined can beeteby
calling them from the ROIS client application Molerequired, the debugger presents debug
information to the NPL programmer. After the moduave been defined and tested a client application
is built to call theclienttasks defined by the NPL programmer. Documentaiiothe ROIS client API is
available on the Web. The data flow of this prodesBustrated in figure 18.

The natural language generation module uses a R@p=mentation of Grail that is available to clien
asGrail.RVM. It consists of a collection of client tasks tiraplement the Grail formalism. The client
applications that have been developed to createraigtain Grail models are call&CE (Galen Case
Environment andGCE WorkspaceA description of these tools can be found onwheb.

programmer editor

Client [NPL programmer Idefix NPL

K

Client Mole Debugge Idefix NPL) ROIS module]
compiler Compiler source (.IDE)
J

Client
Application

User

ROIS server ROIS modulg
binary (.RVM)

ROIS model
(.GRA/.LAN/.SEM)

figure 18: Data flow diagram of ROIS system deveiept process.

2.3 NPL modules used in the current implementation
The modules that implement the natural languagergeion component are described in table 3.

Module name Description

Generic definition of basic language model

Features potential and actual features

Lexicon lemma categories; lemmas; lexeme categdegsmes; spellings
Segments representation of segments

Constituents constituent trees

Syntax processing constituent trees; unification

Frames representation of syntactic frames

Grail retrieval of defining criteria of conceptsi¢luding Filtering)
GrailExtension tagging wrapper concepts; testindjmanipulating criteria sets
Semantics basic semantic model; mappings betweghagrd language models (annotations)
Generate main tasks

table 3: Modules that implement the natural langugeneration component

3 Language models

Both the generic and the language specific linguisformation that is required for multilingual

natural language processing in ROIS are represesteldta in ROIS models callkshguage models

(data files with extension .LAN). There will existe language model for each language covered. These
models consist of a built-in generic part thaderitical in all models, and a language specifi¢ fomr

each language that is build by defining the aamaimmar, adding words, and word forms using
Humpty.

3.1 Representation of basic syntactic objects

The generic linguistic framework of elementary limggic objects and elementary linguistic relatibras
been implemented by creating a set of qualifietsigaarchy of ROIS node and link classes and by
providing several ROIS tasks that can be useddaterthe grammar and a lexicon for a particular
language. The top part of the node class hieraschlyown in figure 19.

topNode
topNodeClass
SyntacticObject
Constituent
LemmaCategory
Noun
basic:Noun
plural:Noun
Article
basic:Article
singular indefinite:Article

Adjective
basic:Adjective
uninflected:Adjective
Preposition
basic:Preposition

PhraseCategory
NounPhrase
AdjectivalPhrase
PrepositionalNounPhrase

FeatureValue
GenderValue
Masculine
Feminine
Neuter

figure 19: Top part of the node class hierarchy

Syntactic objects come in four kinds: lemma categpiexeme categories, phrase categories anddeatu
values. The subclassesl&mmaCategoryNoun Article etc.)andPhraseCatgeoryNounPhrase,
Adjectival Phrasgetc.) correspond with the word and phrase categtiat are traditionally used within
the linguistic community. The same holds for thel@olasses that represent feature vallMies¢uline
Feminine,etc.). Lexeme categories are children of theiresponding Lemma category, e lgasic:Noun
andplural:Noun, and correspond with the different word forms timaty exist for each lemma category.
The top part of the link class hierarchy is showtfigure 20:

topLinkClass
function
head
modifier
determiner
functor

feature
binaryFeature
definite
gender
person
number
case

sb.elling
figure 20: Top part of the link class hierarchy

We distinguish three general kinds of syntactiatiehs: function(e.g.,head, modifiergtc.),feature
(gender person etc.) to represent syntactic functions and syitéeatures respectively, asgellingto
associate lexemes with their spelling.

The generic linguistic framework contains high lesenctions involving the node and link classes
described above. They are created using a sanugi@uialifier calledgeneral The following NPL code
(figure 21) creates that qualifier and adds thkdito represent on a general level that phrasgoaés
can have two kinds of constituents: phrase categamd lemma categories.

UPDATE @Model
ADD QUALIFIER 'general’
SANCTIONED BY systemSanction
PROPERTIES sanctioning
INHERITANCE normal
ADD LINK PhraseCategory.hasConstituent.general. PhraseCategory
ADD LINK PhraseCategory.hasConstituent.general. LemmaCategory

figure 21: NPL code to creageneralqualifier

There is no singlgeneralsanctioning relation betwed&onstituenandFeatureValue Instead for every
subclass ofeaturea generalsanctioning link is created betwe€onstituentand the corresponding
FeatureValueFor example to represent that the gender of atitoent can be masculine feminine or
neuter (figure 22).

UPDATE @Model
ADD LINK Constituent.gender.general.GenderValue

figure 22: Sanctioning of feature values

These sanctioning links of the for@onstituent.feature.general.FeatureValoae for each subclass of
featurg are used in the specification of the languageifpesanctions as will be described in section 3.2
below.

3.2 Representation of Grammars

The taskSyntax.createModelreates a generic language model that incorpotiageinguistic
framework described above including four additiogadlifiers that support the specification of
grammars for particular languages, and the symtérete formation process described in Part | of the
documentation. The specification of the grammaa pérticular language fragment involves (among
other things) the specification of the syntactattees that may apply to particular lemma and sdira
categories, and the specification of the segméuaisare required to cover a relevant fragment ef th
language. In order to support the specificatiothefgrammar of an individual language the generic
language model incorporates the sanctioning gesditalledpotentialandsegmentBoth qualifiers are
sanctioned by the qualifigreneral(figure 23).

UPDATE @Model

ADD QUALIFIER 'potential’
SANCTIONED BY general
PROPERTIES sanctioning
INHERITANCE normal

ADD QUALIFIER 'segment’
SANCTIONED BY general
PROPERTIES sanctioning
INHERITANCE normal

figure 23 Fragment of NPL code that creates thdifigra potentialandsegment

The qualifierpotentialis used to associate features with the lemma arabkp categories to which they
apply in a certain language. For this purpose tRe MiskFeatures.AddPotentialFeaturéss been
defined (figure 24).

CLIENT TASK AddPotentialFeatures @Model %cat “featu res;
DEFINE %feature;
DEFINE “values;
DEFINE %value;
BEGIN
FOREACH NODECLASS %feature IN “features DO
‘values := NIL ;
/I Get the potential value of the feature
FROM @Model TO “values
SELECT NODES Constituent.%feature.general.?va lue;
FOREACH NODECLASS %value IN “values DO
UPDATE @Model
ADD LINK %cat.%feature.potential.%value;
ENDFOR;
ENDFOR;
END AddPotentialFeatures;

figure 24 Definition of the taskeatures.AddPotentialFeatures

This task associates a number of features withingnet category%ocaf). For each feature it first looks up
the potential value as represented in the genevdemand subsequently creates a link betweemihét i
category and potential value. For example, in oribespecify that nouns can have the feature numbe
the task should be called with parameters: %catunrand “features = number. As a result the link:
noun.number.potential. NumberValaeuld be added to the model.

The qualifiersegments used to represent segments in a way that ie samplex than one would
expect. If a segment would be represented by adirike formroot.function.segment.foete would be
unable to represent its shared features and indéisin, as ROIS currently does not support links
between links. On the other hand, links of the foowt.function.segment.foare useful for a number of
reasons. As they are inherited by all the descesdarthe root and the foot retrieval of the segtmeaf a
language via the root or the foot becomes an ee&y tn addition links of this form are needed amyw
as they have to sanction the creation of links thptesent the branches of syntactic trees.

In order to work around this problem the currenpliementation applies a ‘dual’ representation of
segments. This is illustrated in the definitiortto taskSegments.AddSegméfigure 25).

CLIENT TASK AddSegment @Model %root %function %foot “sharedFeatures;
DEFINE %segment;
DEFINE $name;
DEFINE %sharedFeature;
BEGIN
/I Add segment involves four actions:
/I 1 make link class below %function. The name
/I of this link class is %root-%function-%foot e.g., ‘NP-head-Noun’
/I 2 add sanction: %root.%segment.segment.%foot
113
/I 4 add shared features to segment
MakeSegmentName %root %function %foot $name;
UPDATE @Model
/I Add the segment as a LinkClass
ADD LINKCLASS $name %segment
PARENTS %function Segment

CARDINALITY MANY ONE
ADD LINK %segment.hasRoot.internal.%root;
ADD LINK %segment.hasFoot.internal.%foot;
/I Add a link to sanction %root.%segment.const ituent.%foot;
/I needed to build constituent trees
ADD LINK %root.%segment.segment.%foot
/I Add shared features

FOREACH NODECLASS %sharedFeature IN “sharedFeatur es DO
UPDATE @Model
ADD LINK %segment.hasSharedFeature.segmentPro perty.%sharedFeature;
ENDFOR,;

END AddSegment;

figure 25: Definition of the tas®egments.AddSegment

First, this task creates the segment as a linls eléth the name “<root>-<function>-<foot>" as a
subclass to <function>. Second, it creates thé& dirot>.<segment>.segment.<foot>. This link
sanctions the creation of links of class <segmaevitkr qualifier constituenbetween descendants of
<root> and descendants of <foot>. Third, two limkth qualifierinternal are created to make retrieval
of the segment’s root and foot more efficient. Amally, the segment’s position and shared featares
represented by creating links between the segmmehthee features, using the link classes
hasPrimaryDestinatiomndhasSharedFeaturand qualifiersegmentPropertyThese link classes and
this qualifier are actually represented in the gienanguage model, but they exist for implemertati
reasons only.

CLIENT TASK AddSegment @Model %root %function %foot “sharedFeatures;
DEFINE %segment;
DEFINE $name;
DEFINE %sharedFeature;
BEGIN
/I Add segment involves four actions:
/I 1 make link class below %function. The name
/I of this link class is %root-%function-%foot e.g., ‘NP-head-Noun’
/I 2 add sanction: %root.%segment.segment.%foot
113
/I 4 add shared features to segment
MakeSegmentName %root %function %foot $name;
UPDATE @Model
/I Add the segment as a LinkClass
ADD LINKCLASS $name %segment
PARENTS %function Segment

CARDINALITY MANY ONE
ADD LINK %segment.hasRoot.internal.%root;
ADD LINK %segment.hasFoot.internal.%foot;
/I Add a link to sanction %root.%segment.const ituent.%foot;
/I needed to build constituent trees
ADD LINK %root.%segment.segment.%foot
/I Add shared features

i:OREACH NODECLASS %sharedFeature IN “sharedFeatur es DO

UPDATE @Model
ADD LINK %segment.hasSharedFeature.segmentPro perty.%sharedFeature;
ENDFOR,;

END AddSegment;

figure 26 Definition of the tasBegments.AddSegment

3.3 Representation of lexicons

The structure of the lexicons used by the natanadjliage generation module is identical for all
languages. However, the grammar specifies whidufea can apply to the lemmas of particular
categories. Lemmas are represented as subclasbesparticular lemma category they belong to. Thei
(internal) name is constructed by concatenatingsffedling of their basic form and their category.
Adding a lemma also involves adding its basic fofis is illustrated by the definition of the task
Lexicon.AddLemméigure 27).

CLIENT TASK AddLemma @Model $basicSpelling %categor y :%NewLemma ;
DEFINE $lemmaName;
DEFINE $subCategory;
DEFINE %subCategory;
DEFINE %wordForm;
BEGIN
GetLemmaName $basicSpelling %category $lemmaName;
IF EXISTS NODE $lemmaName %NewLemma IN @Model THE N

RETURN -500;
ELSE
MakeSubCategoryName 'basic' %category $subCateg ory;
IF EXISTS NODE $subCategory %subCategory IN @Mo del THEN
#fastlink on;

UPDATE @Model
ADD NODECLASS $lemmaName %NewLemma PARENTS %category;
AddWordForm @Model %NewLemma %subCategory $ basicSpelling %wordForm;
#fastlink off;
ENDIF;
ENDIF;
END AddLemma;

figure 27 Definition of the taskexicon.AddLemma

Lexeme categories represent the forms individuahias of a particular category can take. For every
lemma category there exists at least one lexenegaat that represents the basic form of that lemma
category with the appropriate feature value pa&irg.,, basic:Noun with number=singular. Additional
Lexeme categories can be defined using theAaslSubCategoryFeaturdélat is presented in figure 28
below.

CLIENT TASK AddSubCategoryFeatures @Model $subCateg ory %category ‘features;
/I adds lexeme category and features
DEFINE %subCategory;
DEFINE $subCategoryName;
DEFINE %feature;
DEFINE %node;

BEGIN
MakeSubCategoryName $subCategory %category $subCa tegoryName;
IF NOT EXISTS NODE $subCategoryName %subCategory IN @Model THEN
UPDATE @Model
ADD NODECLASS $subCategoryName %subCategory P ARENTS %category SubCategory;
ENDIF;

FOREACH NODECLASS %node IN “features DO
IF %feature EQUALS NIL THEN
%feature = %node;

ELSE
Features.AddFeatureValue @Model %subCategory %feature %node;
%feature := NIL;
ENDIF;
ENDFOR;

END AddSubCategoryFeatures;

figure 28: Definition of AddSubCategoryFeatures

A lexeme is represented by creating an anonymdudass of its associated lemma and its lexeme
category. Its spelling is implemented by creatingmaSpellindink to a ROIS TEXT node that
represents its spelling. The representation of larnategories, lemmas, lexeme categories, lexemds, a
spellings is illustrated in

figure 29 below. Note that the feature value g@nder=neutemill be inherited by all the lexemes of

the nounoor.

LemmaCategory WordCategory
Noun LexemeCategory
plural «— number— plural:Noun oor_Noun basic:Noun — number— singular
gender
“oren” «— hasSpelling—— l hasSpelling— “oor”
neuter

figure 29. Examples to illustrate general schemepfesentation of lemmas and lexemes

The present approach allows the representatioexefiies that have the same spelling but that betong
different lemmas. For example, the Dutch strijg could be the spelling of both a plural form of the
Dutch verkzijn (to bg and a singular form of the possessive prormjm(his). Note that this scheme
also supports word forms of a single lemma thatehdentical spellings but different features, etige,
masculine nominative singular and feminine genisivegular form of the German definite artictie().
Finally, the present approach could easily be el¢drnio represent alternative spellings and the
pronunciation of lexemes.

In order to assign feature values pairs to phrasegories, lemmas, and lexeme categories, theigener
model incorporates a qualifier callexttualand a task calleBeatures.AddFeatureValue

UPDATE @Model
ADD QUALIFIER 'actual’
SANCTIONED BY potential
PROPERTIES irreflexive
INHERITANCE default

figure 30. Definition of the qualifieactual

The qualifier is sanctioned by the qualifistential(its definition is shown in figure 30) and assiuygia
feature value to a lemma or a lexeme category jpdemented by creating a link of the form <phrase |
lemma | lexeme category>.<feature>.actual.<featahge>.

3.4 Representation of Syntactic trees

We described syntactic tree formation as the ckayrdgactic mechanism to be used in natural languag
generation and natural language analysis. In dodepresent syntactic trees, the generic language
model incorporates a qualifier callednstituentwhich is sanctioned by the qualifisegmentlts

definition is shown in figure 31.

UPDATE @Model
ADD QUALIFIER ‘constituent'
SANCTIONED BY segment
PROPERTIES irreflexive
INHERITANCE no

figure 31 Definition of the qualifieconstituent.

Consider the simple constituent tree representieg\tPan infectionwhich is presented in figure 32.
The tree involves two segments: NounPhrase-head:Nowd NounPhrase-determiner-Article.

Noun Phrase

N\

determiner head
Article: Noun:
an infectior

figure 32. Simple constituenty tree representirgNifan infection

This tree can be represented in the following W¥ an instance of the categdigunPhrasee.qg.,
[NounPhrase: #765]and instances of the lemmiagection_Nouranda_Article,e.g., [infection_Noun:
#9876] and[a_Article: #6543]we can create the following links using the linksdesNounPhrase-
head-NourandNounPhrase-determiner-Article

[NounPhrase: #765].NounPhrase-head-Noun.constit{ief¢ction_Noun: #9876]
[NounPhrase: #765].NounPhrase-determiner-Articlastituent.[a_Article: #6543]

Note that as soon as some linguistic expressiobéers produced for a certain Grail concept, therlam
and phrase instances that were used to build titactic tree are no longer needed and can be ddpos
of. For this purpose the taglonstituents.RemoveConstituénavailable.

3.5 Representation of syntactic frames

Syntactic frames are the building blocks of theuratlanguage generation process. Examples are
presented in figure 33. Syntactic frames residdénlanguage model. They are represented in ROIS by
instances of the node cldssmme These frame instances can have up to four links qualifier internal
and respectively the link classedtribute SegmenattributeLemmavalueSegmenandvalueLemma
which associate the frame instance with these segnamd lemmas. For example, the simple frames in
figure 33(a) and figure 33(b) only have a link he tattributeSegmentsl¢unPhrase-modifier-
AdjectivalPhraseand NounPhrasmodifier-NounPhrase The frame in figure 33(c) has two links: one
to the attributeSegmeniiounPhrase-modifier-PrepositionalNounPhrgsand one to the
attributeLemmadf_Preposition) The frame in figure 33(d) has four links: ondtte attributeSegment
(NounPhrase-modifier-PastParticipls®ne to the attributeLemmanix_MainVerb) one to the
valueSegmentRastParticipleS-modifier-PrepositionalNounPhrasand one to the valueLemma
(in_Preposition.

A frame’s attributeSegment and valueSegment réteits topic constituent and value constituentha t
following way: The topic constituent of a frame alg corresponds with the foot of the attributeSegme

The value constituent of a frame corresponds eitfitér the foot of its valueSegment (if it has ona),
with the foot of the attributeSegment.

(@ (b) (©) (d)
NounPhrase NounPhrase NounPhrase NounPhrase
mod|ifier motlifier motlifier motlifier
Adjectivll Phrase Noun |Phrase Prepositional!\lounPhrase PastP|articipIeS
fu n|ctor head/\modifier

| / N\

Prepositionof MainVerb:mix PrepositionalNounPhrase

functor

Prepositionin

figure 33. Example frames for English. Topic casnts are in italics, value constituents in bgjukt
face

3.6 Overview of the implementation of the generic lingistic framework

A schematic overview of the ROIS implementatiorihaf linguistic framework is presented in figure 34.
It presents the top levels of the link and node<laerarchy. Link classes are represented in boxes

topLinkClass TopNodeClass

SyntacticRelation

SyntacticObject

PhraseCategor)I- ----- { function} ------- .. [feature] | FeatureValue

LemmaCategor;l R4

- gender. b

NounPhrasel - —[NP-head-Noun]— - — =

| oor_Noun l—[gender

basic:Noun number =|| singularl | plural
hasSpeIIinQ—Pl “oor” |
NounPhrase: #525}1—' number'—bl singular

| L g | isSubclassOf

------ > general

[NP—determinerArticIeI NP-head-Noun] -——> segment

S—— potential

e actual

| [de_Article: #8398] | | [oor_Noun: #8398] | —l constituent

figure 34 Schematic overview of implementation ehgric linguistic framework in ROIS

with rounded corners. The horizontal arrows witlaléier generalrepresent the generic (language
independent) sanctioning links. The horizontakdinvith the qualifiersegmentind potentialare
examples of links that are part of the specificatiba Dutch language model. Note that the figare i
incomplete in the sense that sopwtentiallinks are not presented for presentational reasohs (for
example the link betweddounPhraseandNumberValug The links qualified aactualare a part of a
Dutch lexicon. The links qualified &®nstituentrepresent the branches of an example constituest t
that would be built during the natural languageegation process. Note also, that the branches are
represented by links between an instance of the nladNounPhraseand instance of the lemmas
oor_Nounandde_Atrticle

4 Representation of relationsin Grail

In the ROIS implementation of Grail, criteria artdtements are represented by links. In order tabbe
to annotate relations, such as the relatifmacture, hasLocation, Boneje create a link from a link that
represents this relation to the node representiagyntactic frame in the language model. This is
implemented as follows: first, in the Grail moddiré Fracture.hasLocation._statement_.Base
created using the qualifiestatement_.Then a hook to that link is created using the R&&king
mechanism. In fact, the resulting cloak is a ROd8enthat will serve as a hook to the relatiBracture,
hasLocation, BoneJrhis is illustrated by the task addStatement ftbmmmoduleSysten{figure 35).

CLIENT TASK addStatement @model %tail %attr %qual % head :%cloak;
BEGIN

#checking off; // allows redundant sanctions!

IF NOT EXISTS LINK %tail.%attr.%qual.%head IN @mo del THEN

UPDATE @model
ADD LINK 9%tail.%attr.%qual.%head;
ADD CLOAK %tail.%attr.%qual.%head %cloak;
ELSIF NOT EXISTS CLOAK %tail.%attr.%qual.%head %c loak IN @model THEN
UPDATE @model
ADD CLOAK %tail.%attr.%qual.%head %cloak;
ENDIF;
#checking on;
END addStatement;

figure 35. Definition of tasiSystem.addStatement

5 Linguistic annotation of Grail models

ROIS provides support to create links between nttesreside in different models. This featurededi

to represent linguistic annoatations of Grail medsemantic mappings from concepts of a particular
Grail model to syntactic objects (lemmas and syitdames) of a Language model. The links that
represent the semantic mappings are storedsemamntianodel A semantic model can incorporate links
from a Grail model to several Language models. §¢reantic models uses the link classExpression
and the qualifiesemantido represent the linguistic annotations. The NdkSemantics.createModel
creates a model that includes this link class aedjualifiersemantic

Before we can create a link between a conceptrelation from a Grail model and a syntactic object
from a language model both the Grail model andahguage model should beldedto the semantic
model using the NPL tasl&mantics.AddGrailMod@lndSemantics.AddLanguageModespectively.
The tasksSemantics.EnumLanguageModeds be used to find out which languages are asadcwith

a particular semantic model.

Once we have a semantic model that relates a @kl to a Language model the concept annotations
can be added to a semantic model by calling tHeSamantics.AddSemanticMappirih the concept
and the lemma as arguments. This task simply dddbrik if it does not yet exist (figure 36).

CLIENT TASK AddSemanticMapping @sem %concept %synta cticObject;

BEGIN
IF NOT EXISTS LINK %concept.hasExpression.semant ic.%syntacticObject IN @sem THEN
UPDATE @sem
ADD LINK %concept.hasExpression.semantic.%syn tacticObject;
ENDIF;

END AddSemanticMapping;

figure 36. Definition of the NPL tasBemantics.AddSemanticMapping

10

Relation annotations are represented To annotateethtion(Fracture, hasLocation, Bondyst the task
System.addStatementcalled with the qualifier statement from the Grail model. The hook (otoak

in ROIS terms) that is returned by this task caanthe used as tléconceptargument to the task
Semantics.AddSemanticMappistgown in figure 36 above.

The argument %syntacticObject is a syntactic frénoma the language model.

Concept annotations can be retrieved from the stonamdel using one of the NPL tasks defined for
that purpose, such &mantics.GetAllLemmasForEntityiven a particular Grail concept this task
retrieves the lemmas that are capable of expressengoncept in the language represented by the inp
paramete@languageModelThe definition of this task is presented in figu7.

TASK GetAllLemmasForEntity @semanticModel @language Model %concept: ‘Lemmas;

DEFINE %lemma;

DEFINE ‘lemmas;
BEGIN

FROM @semanticModel TO "Lemmas

SELECT NODES %concept.hasExpression.semantic.?! emma
WHERE ?lemma IN @languageModel;

END GetLemmasForEntity;

figure 37 Definition of the NPL tasRemantics.GetAllLemmasForEntity

In addition to the tasks mentioned above$eenanticsnodule contains several other tasks that add and
remove mappings between Grail and Language models.

6 Filtering: criterion suppresson and wrappers

Although it is not actually a part of the naturahguage generation modules, this section will descr
the filtering mechanism incorporated within the B@rail module. Both wrappers and criterion
suppression are represented using theaddiStatemerpresented in figure 35. To represent a wrapper
this task is called with the qualifiemwrapper, and to represent criterion suppression it isedalith the
qualifier _suppress (see figure 38). Note that wrappers can be asdigrrank which indicates the order
in which they apply.

CLIENT TASK addSuppress @grailModel %tail %attr %he ad;
DEFINE %ocloak;
BEGIN
System.addStatement @model %tail %attr _suppress_ @grailModel %head %cloak;
END addSuppress;
CLIENT TASK addWrapper @grailModel %tail %attr %hea d %rank;
DEFINE %ocloak;
BEGIN
System.addStatement @model %tail %attr _wrapper_@ grailModel %head %cloak;
IF NOT %cloak EQUALS NIL THEN
IF NOT EXISTS LINK %cloak.hasWrapperRank.system Definition.%rank IN @model THEN
UPDATE @model ADD LINK %cloak.hasWrapperRank. systemDefinition.%rank;
ENDIF;
ENDIF;

END addWrapper;
figure 38 Representation of criterion suppressiot arappers

The generation algorithm calls the task Grail.defiffriltered which returns the defining criteriasof
concept but which unwraps any wrappers, and wteatowes any criteria that are suppressed. For
further detail see the sources of the Grail mo¢@l=il.ide andFilter.ide).

7 Implementation of the generation algorithm

The implementation of the generation algorithm elp$ollows the description of the algorithm as
presented in the part 1 of the documentation, dadenerating Multilingual Natural Language
Expressions for Grail Concept§he corresponding NPL code contains many commandss largely
self- explanatory. The main tasks that implemeetrthtural language generation process are defined i
the modulessenerate Syntax andSemanticsBelow these will be presented in turn.

11

7.1 Generate

CLIENT TASK GeneratePhrase @sem @gra @lan %concept
:$SurfaceString :%MainCo
:"NoSegmentForCriterion

TASK GenerateConstituent @sem @lan @gra %concept %t

:"NoLemmaForConcep

HIDDEN TASK ExpressCriteria @sem @lan @gra %topic %

“criteria :'NoLemmaForC

7.2 Syntax

TASK FunctorizeAll @lan %const %addArticles;
TASK Serialize @lan %const :"LemmaSequence;
TASK MakeSurfaceString @lan “lemmaSequence :$Phrase

7.3 Semantics

TASK GetFramesForCriterion @sem @lan @gra %concept
TASK GetLemmasForEntity @sem @lan %entity “categori

$addArticles $phraseCategory
nstituent :"NoLemmaForConcept
:"NoRightWordForm;

argetClass :"Constituents

t :"NoSegmentForCriterion;
topicConstituent

oncept :"NoSegmentForCriterion;

:"NotRightWordForm;

%att %val %rootCategory :"Frames;
es :'Lemmas;

8 API of Natural Language Generation modules

This section lists the signatures of the taskseeffifor use by clients, ordered by module.

8.1 Features

AddFeatureValue @Model %cat %feature %value
DeleteFeatureValue @Model %cat %feature %value
GetPotentialFeatureValues @Model %feature :"Values
GetLocalValues @Model %cat :"local
GetLocalFeatureValue @Model %cat %feature :%value
AddPotentialFeatures @Model %cat “features
GetActualFeaturesAndValues @Model %cat :"FeaturesAn
GetPotentialFeatures @Model %cat :*features
GetFeatureValue @Model %cat %feature :%value
ChangeFeatureValue @model %cat %feature %value

8.2 Lexicon

AddCategory @Model $name %firstParent “otherParents
ChangeSpellingOfwordForm @lan %wordForm $newSpellin
GetPotentialCategories @lan %spelling :"Categories
AddLemma @Model $basicSpelling %category :%NewLemma
GetLemmaForms @lan %lemma :"WordForms
GetFirstLemma @lan %category :%Lemma
SearchMatchingSpellings @Model $spelling : Texts
EnumLemmacCategories @lan :*Cats

GetLemmasForEntry @lan %spelling %category :"Lemmas
AddFormFeatureValue @Model %cat %feature %value
GetNextLemma @lan %category %previousLemma :%Lemma
GetSpelling @lan %wordForm :$SpellingString
EnumSubCategories @Model %category :"SubCategories
GetLemmaForm @Model %lemma %subCategory :%Form
AddSubCategoryFeatures @Model $subCategory %categor
GetLemma @lan $basicSpelling %category :%Lemma
AddWordForm @Model %lemma %subCategory $wordFormSpe
GetFormAndSpelling @model %lemma %subCategory :%for
HasOnlyOneSubCategory @lan %lemma :%Bool

8.3 Segments

AddSegment @Model %root %function %foot “sharedFeat
GetRootAndFoot @lan %segment :%Root :%Foot
GetFoot @lan %segment :%Foot

GetSegment @lan %root %function %foot :>Segment
AddDestination @lan %root %function %foot %destinat
AddSubSegment @lan %parent %root %function %foot “f
GetRoot @lan %segment :%Root

8.4 Constituents
RemoveConstituent @lan %const

dValues

y “features

lling :%WordForm
m :%spelling

ures

ion %position
eatures

12

8.5 Syntax

createModel $file :@Model

8.6 Frames

GetElements @lan %frame :%attributeSegment :%attrib uteLemma :%valueSegment
:%valueLemma

EnumLemmacCategories @lan %segment :"Categories

EnumAttributeSegments @lan :*Segments

FindFrame @lan %attributeSegment %attributeLemma %v alueSegment %valueLemma :%Frame
GetFrame @lan %attributeSegment %attributeLemma %va lueSegment %valueLemma :%Frame
EnumValueSegments @lan %segment :"Segments

MakeFrame @lan %attribute Segment %attributeLemma %v alueSegment %valueLemma :%Frame

8.7 GrailExtension

RemoveCriteria “criteria “minus :"Criteria

8.8 Semantics

RemoveSemanticMapping @sem %concept %syntacticObjec t
EnumGrailModels @model :*"Models

AddGrailModel @sem $sub :@sub

AddLanguageModel @sem $sub :@sub

GetAllLemmasForEntity @sem @lan %concept :'Lemmas
EnumLanguageModels @model :"Languages

getLocalFrames @sem @language %cloak :*frames
GetEntitiesForLemma @sem @galen %lemma :"concepts
AddSemanticMapping @sem %concept %syntacticObject

makeCriterionMapping @sem @galen %topic %attr %valu e %segment %lemma
createModel $file :@sem

getFrames @semantics @galen @language %topic %attr %yvalue :%statement :*frames
removecCriterionMapping @sem @galen %topic %attr %va lue %segment %lemma

8.9 Generate

GeneratePhrase @sem @gra @lan %concept $addArticles $phraseCategory :$SurfaceString
:%MainConstituent :"NoLemmaForConcept :'NoSegme ntForCriterion :"NoRightWordForm

9 External/interchange formats for Language models and Semantic models

The source files for language models and semarddeta are in Lexicon Interchange Format (.LIF) and
Mapping Interchange Format (.MIF) respectively.d®ethese formats are described in EBNF notation.

<LIF> = LANGUAGE <language> <lemmas>

<language> n= <string>

<lemmas> m= l{<lemma>}

<lemma> = LEMMA <lemma_category> <spelling> [<feees>] [<forms>]
<lemma_category> = <lemma_category_full> | <lemozdegory_abbrev>
<lemma_category_full> := Noun | Adjective | Arddl Preposition | Adverb | ProperName | PN |

CoordinatingConjunction | SubordinatingConjunctipMainVerb |
AuxiliaryVerb | CopulaVerb | CardinalNumber | Perat®ronoun |
PossessivePronoun | DemonstrativePronoun | Intgivegronoun |
IndefinitePronoun | ReflexivePronoun | Reciprocatidun |
RelativePronoun |

<lemma_category_abbrev> ::= N | ADJ | ART | PREBY | COOCON | SUBCON | MV | AV | CV
| CARD | PERSPRO | POSSPRO | DEMONPRO | INTERPRO |
INDEFPRO | REFLPRO | RECIPRO | RELPRO

<spelling> n= “<string¥

<features> = FEATURES 1{<feature>}

<feature> = <feature_name><feature_value>

<feature_name> = number | gender | definited jgaenominal | inflection | affixRole |

countable | determinable | diminutive form | tejsspect | participle |
syntacticallyTransitive | syntacticallyReflexiveefiprocal |
separableVerb | diminutiveForm

13

<feature_value>

<forms>

<form>
<lexeme_category>
<string>

<MIF>

<suppress>
<wrapper>

<concept>

<attribute>
<concept_annotation>
<relation_annotation>
<frame>

<concept>
<segment>
<phrase_category>
<function>

<constituent_category>

<other_phrase_category>

singular | plural | masculifeminine | neuter | + (positive) | -
(negative) | nominative | genitive | dative | aative | translative |

partitive | essive | inessive | adessive | illatizkative | elative |

ablative | instructive | abessive | prefix | irffsuffix | past | present |

future | perfect | imperfect | presentParticigdagtParticiple
FORMS 1{<form>}
<lexeme_category> <spelling>
“<string>"
1{a..z | A..Z| 0..9}

LANGUAGE <language> 0{<suppress>} 0{<wrpgr>}
0{<concept_annotation >}0{<relation_ annotation >}
SUPPRESS <concept> <attribute> eptnc
WRAPPER <concept> <attribute> <comeep
<string>
<string>
CONCEPT <concept> 1{<lemoadegory> <spelling>}
RELATION <concept> <ditrie> <concept> 1{<frame>}
FRAME <segment> [<lemma_category> <lapgb
[WITH <segment> [<lemma_category> <spelling>]]]
<string>
<phrase_category>-<function>-<conetit_category>
NP | S| PP | ADJP | PNPYRAD
head | maodifier | functor | deterarin prefix | postfix | subject |
directObject | indirectObject | complement | aaxili| particle |
predicate | conjunctionElement
<lemma_category_abbteyrhrase_category> |
<other_phrase_category>
<string>

14

Generating Multilingual Natural Language
Expressions for Grail Concepts

Part I1l: Using Humpty and GCE

Wim Claassen
University of Nijmegen
NICI

15

16

Contents

2.1 Grammar specification: Humpty Grammar files....

2.2 Compiling @ grammar fil€.......ccceeiee s ee e e e e et e e et 2.

2.3 Adding and modifying lemmas and word forms @IIeS)ccoeviiiiiiiiiii e e 3
3 Using the GCE to add and maintain Linguistic Aations
3.1 Concept and relation @NNOTALIONceeemuiieii et as e e e e e ee e e e e eeeeeaeaee e seanearaaeaaeeaaeeeseeannnes
3.2 GENEIAtNG ANQUAGE. .. . e i e eee et eeee et e e e e e e e et e e et aee e ate e s e meenass s eesesaeeeetaetetaesenns s aaneeeeeeemnnns
3.3 Importing and exporting annotations..

4.2.2 Create a Language model
4.2.3 Create liNQUISTIC @NNOALIONScceeeiei e i ee e iee e e s e e e e e eeeee e meeee e eeeee e abe et e e aaeaaeeaeaaeseeennens
Appendix A: Grammars in Humpty format ((GRM)c.oiiiiiiiii et e s e e aaeaaeaeas
10T 01 o P PP PP TP

Appendix B: Format of interchange files ((MIF; .DE........oooimiiii e eeeme e e 25

1 Introduction

The documentation on the ROIS based Natural Larey@Gmerator developed within the context of the
Galen In Use project consist of three papers: (hearetical paper on the design of the generépmr
description of its implementation, and (3) this @awhich is a manual describing how the generator i

to be used.

Grail models can be created and maintained usi@@RIS clientGCE (Galen Case Environment).
Documentation of the GCE is available via the Wiie ROIS Natural Language Modules provide a
collection of tasks to create grammars and lexidfonthe European target languages. These tasks are
called by an aplication callddumpty In addition, ROIS Natural Language Modules prewiasks that
support the annotation of Grail models with lirgjig knowledge in order to automatically produce
natural language expressions for Grail conceptss@lare called by the GCE. The following sections
will go into Humpty and the GCE in turn.

2 Humpty

The ROIS client application Humpty can be used,fiscreate and compile natural language grammars,

and second, to populate and maintain lexiconsateatompatible with such a grammar. Usually we

refer to a compiled grammar adasic language modelvhereas a basic language model that has been

populated with lexical material is referred to darmyuage model

2.1 Grammar specification: Humpty Grammar files

The ROIS client applicatiorlumptycan be used to create basic language models.ié&lbaguage
model specifies the grammar of a particular languddat is, which features potentially apply to ethi
lemma and phrase categories, which lexeme catagamieidentified and what their features are,
additional phrase categories that are required ta@degments that can be used to built phrases.
The syntax of grammar files is presented belowBNE notation.

<grammar>

<language>
<category_spec>
<lemma_spec>

<phrase_spec>

<new_phrase_spec>

<lemma_category>
<lemma_category_full>

<lemma_category_abbrev>

<feature_specs>
<feature_spec>
<feature_name>

LANGUAGE <language>
O{<category_spec>}
O{<segment_spec>}
END <language>

<string>

<lemma_spec> | <phrase_spae |phrase_spec>

CATEGORY <lemma_category>
<feature_specs>
0O{<form_spec>}
END

CATEGORY <phrase_category>
<feature_specs>
END

CATEGORY <string>
BASE <phrase_category> | <string>
< feature_specs >
END

<lemma_category_full> | <lemozdegory_abbrev>

Noun | Adjective | Aréd Preposition | Adverb | ProperName | PN |
CoordinatingConjunction | SubordinatingConjunctipMainVerb |
AuxiliaryVerb | CopulaVerb | CardinalNumber | Peraironoun |
PossessivePronoun | DemonstrativePronoun | Ineived’ronoun |
IndefinitePronoun | ReflexivePronoun | Reciprocatun | RelativePronoun

|

N | ADJ | ART | PRERY | COOCON | SUBCON | MV | AV | CV |
CARD | PERSPRO | POSSPRO | DEMONPRO | INTERPRIDEFPRO |
REFLPRO | RECIPRO | RELPRO

FEATURE 1{<feature_spec>}

<feature_name> | <feature_vapec>

number | gender | definited [gaenominal | inflection | affixRole |
countable | determinable | diminutive form | tehaspect | participle |

syntacticallyTransitive | syntacticallyReflexiveegiprocal | separableVerb |

diminutiveForm
<feature_value_spec> = <feature_name> = <featalae>

<feature_value> = singular | plural | masculifeminine | neuter | + | positive | - | negative |

nominative | genitive | dative | accusative | ti@ng | partitive | essive |

inessive | adessive | illative | allative | elafiablative | instructive | abessive

| prefix | infix | suffix | past | present | futyneerfect | imperfect |
presentParticiple | pastParticiple

FORM <lexeme_category>[<featureugabpecs>] END

FEATURES 1{<feature_eatpec>

“<string>"

SEGMENT phrase_category> <fometkconstituent_category>
DESTINATION PRIMARY=<position>
<shared_features>

<form_spec>
<feature_value_specs>
<lexeme_category>
<segment_spec>

END
<phrase_category> = NP | S| PP | ADJP | PNPYRAD
<function> = head | modifier | functor | detersnin prefix | postfix | subject | directObject |

indirectObject | complement | auxiliary | particleredicate |
conjunctionElement
<constituent_category>

<other_phrase_category> = <string>

<shared_features> = O{FEATURES 1l{<feature_nanje>}
<string> = 1{a..z| A..Z| 0..9}

<position> = 1..9

Example grammars in this form are presented in AgdpeA.

2.2 Compiling a grammar file

When you start Humpty (e.g., by clicking the icoonfi the ClaW console) the Humpty console will
open. If you want to create a new language modsl thooséModel-Newfrom the menu bar. A

<lemma_category_abbfeyshrase_category> | <other_phrase_category>

grammar editor window will open. Here you can ceestd modify grammars according to the format
described above (figure 39). Note that Humpty assuthat grammar files are stored in a subdirecibry

your ROIS directory calle@Grammars e.g., in C:\ROIS\GRAMMARS.

" Humpty =10 x]

Maodel Lemma Optiohs Help

LIEEE

. Grammar - C:\ROISBETA\GRAMMARS\dutch_grm _ O] x|
Eile Edit Compile!

/4 Author: Wim Claassen ﬂ
ff Created: 06-0Z-282
// LastEdit: Z0-10-98

LANGUASE Dutch

CATEZORY Noun
FEATURES gender countMNoun determinable number=singular
FORM plural
FEATURES number=plural
END

END :J

figure 39: Editing grammar files using Humpty

You can choos€ompilefrom the menu bar to compile the grammar into a basic language model.
Once you have succesfully compiled the grammar ptywill open the new Language model for you.
Then you can can close the grammar editor and atiging lemmas and lexemes to the language model.

2.3 Adding and modifying lemmas and word forms (lexemés

In order to add or modify lemmas and word formgdhaes) the language model must be open. You can
open an existing language model by choodituglel-Operfrom the menu bar. Humpty displays the
name of the open language model in its title baldiAg lemmas and lexemes to a language model can
be done in two ways, either interactively, or byarting an ascii file in .LIF format. To add lemmas
interactively chooseemma-Addrom the menu bar. Then a window titledmma . will open. In this
Lemmawindow select the lemma category of your choicg emnter the basic form of the lemma. After
you press th®k button thd_emmawindow will display a list of features and a laftword forms

(lexeme categories) as specified by the grammguri 40).

Lemma... ﬂ
|aa 3 |Nuun

Search... Delete

countNoun <novalue>
determinable +
gender heuter

—Word forms

plural oren

oor Change

Cloge |

figure 40: Interactively adding or modifying lemmeasd word forms

If you right click a feature value in the list, @hative values will be presented to you in a fistk
Selecting one of them will reset the feature tortber value.

You can add or edit the spelling of the individuaird forms of the lemma by selecting the name ef th
word form (the lexeme category) and subsequenthjngdor modifying the contents of the text boxfat t
bottom of the lemma window and pressing @Gfengebutton.

You can add lemmas and lexemes to a language rhpd®lporting an ascii file inLexicon Interchange
Format(.LIF; see appendix B). Then you should chddsalel-Importfrom Humpty's menu bar.
Conversely, you can export the lexical informatiamm any language model to a .LIF file by choosing
Model-Export Note that in order to import a LIF file succe$fut must be compatible with the grammar
of the language model into which it is importedisTimeans that the features must be applicabletrend
names of the lexeme categories used must be idértiampty assumes that .LIF files are stored in a
subdirectory of your ROIS system directory cal@alirceqe.g., in C:\ROIS\SOURCES)

3 Using the GCE to add and maintain Linguistic Annotations

You can use the GCE to add multilingual naturaglzage generation facilities to a Grail model. To do
S0 you must have access to a basic language nuodsadh of the languages you want to add. To add a
particular language from scratch you should craatempty MIF file for your language. This is aniasc

file named <language>.MIF, (e.g., German.MIF) whiekides in your ROIS\SOURCES directory. The
first line of this file should bd:ANGUAGE <languageXe.g.,LANGUAGE German Now first open

the Grail model and @RM Browsemwill display the top of the concept hierachy. Céeloanguage-
Import from the CRM Browser’s menu bar, and select thifiteifrom the file dialogue box that opens.
Usually you will start the linguistic annotationgaess by tagging the wrappers and criteria to be
suppressed in the Grail model. Subsequently yduawd the concept and relation annotations for your
language.

3.1 Concept and relation annotation

In order to add or modify annotations you shouldrothe GCE'<Criteria Window by choosing
Windows-Criteriafrom the GCE’s menu bar. Then you focus the CRbWser on the concept you are
interested in. The criteria window will display tbencept in canonical form (figure 41). Make suratt
the optionDisplay-Prettyof the criteria window is checkednd that the optioDisplay-Filter of the
criteria window is unchecked.

¥ GCE !E'E

todel Archive Windows Options Help MWaorkSpace!

& CRM Browser - C:\ROISBETA\MODELS\5q. gra _ o] x|
Edit “iew Display Entity Link Language Tools

SurgicalProcedure
(Surgicalleed which < isMainlyCharacterisedBy (performance which < isEnactmenty

+ Criteria - (SurgicalDeed which < isMainlyCharacterisedBy (performance which ... !Elm

Edit Display
Process which
playsClinicalRole SurgicalRole
isMainlyCharacterisedBy performance which
isEnactimentOf NormalisingProcess which
hasipecificSubprocess Suturing
involwes horticirch
playsClinicalRole SurgicalRole
———extrinsic---
hashissectionRubric extrinsical 'NC3P-FI FCEOQ lortan kaaren korjaus owmpelemalla

figure 41: GCE console with CRM browser and craesindow

If you right-click on a line of the criteria windoswmenu pops up. You can chodseotate Concepb
annotate the value of the criterion that is dispthgn the line clicked ,aninnotate Statememd create
or modify an annotation for the relation that iegented on that line.

If you chooseAnnotate Concep Concept Annotatiowindow will be displayed (figure 42). It allows
you to inspect, create, and modify annotationfiefdoncept with existing or new lemmas in multiple
languages using the buttosdd Change andDelete You can display the lexical information on a
particular lemma by selecting it from the list gméssing the buttorHumpty.You can also inspect
other concepts that have been annotated with thetsé lemma by selecting the concept from the
bottom list and pressing the buttBrowse This will open a CRM Browser focussed on thatosg.

Concept annotation...

Concept: ISuturing

Language: IFinnish

Lemma: I orne lls

Categony: INoun

ontnella Noun

Change

Delete

Humpty...

selected lemma is also annotation of:

Suturing

Browse

LRI -

Close |

figure 42: The concept annotation window.

If you chooseAnnotate Statemeatfter right clicking on one of the lines in théteria window the
Relation Annotationwvindow will be displayed (see figure 43).

Relation annotation... m

Relation: ISurgicaIDeed j IisMainIyCharamerisedEﬁy j Iperformance j

[Local. i.e. only display direct annotations.

—These options effect the language generation in all languages!

 Buppress
¥ Wrapper: Irank_1 j
 Language: IFinmsh j
—Frame
hain segment
[NP-modifier-GenitivalNP =]
Lemme: I j Humpty...l

Extra segment

| [

Lemma: I I j Humpty...l

Close | Al Change Delete |

figure 43: Suppression and wrapper tagging usieg ¢hation annotation window.

At the top of this window the relation is presentkdt applies to the criterion you just right-ckck In

this example this was the criteri@MainlyCharacterisedBy performanc€he relation presented will
usually be more general than the criterion seledtet is, at a higher level in the concept higngrc

This is so if the topic concept of the relati@ufgicalDeedn the example) is an ancestor of the concept
focussed, if the attribute presented is an ancestire criterion clicked, or the value concept
(performancen the example) is an ancestor of the value ottiterion clicked. If you want to add an

annotation at a lower level in the hierachy, yostfiark the check bdxocal in order to see only
relations that are local, i.e. that exist betwdentbpic concept and the criterion value. Now yan ase
the drop-down lists to select more specific coneeptd/or a more specific attribute.

You can suppress linguistic realisation of the entrelation by clicking the radio button
Suppresdlternatively you can tag the relation as a wragpesetting the rank of the wrapper using the
drop-down list and pressing the button markWécpper Please note that wrapper and suppression
tagging have effects for all the languages.

Relation annotation...

Relation: IProcess j IhasSubprocess j IProcess j

™ Local, i.e. only display direct annotations.

— These options effect the language generation in all languages!

" Suppress
 ‘Wrapper. IfﬂﬂkJ j

&~ Language: |Finnish j
—Frame

I[Frame: MNP-rmodifier-lnstructiveNF] j

Main segment

INP—modifier—InstrudiveNP j

Lemma: I Noun j Hurmpty.. |

Extra segment

I(notused) j
Lemma: I | j Hurmpty.. |

Close | Add Change Delete |

figure 44: Annotating a relation with a syntactiarhe using the relation annotation window

To annotate the relation with a syntactic frama iparticular language, first select the languagen fthe
drop-down list (see figure 44). Then successivelgd the attribute (main) segment and lemma, had t
value (extra) segment and lemma from the drop d@tsto specify the frame that will be used to
express the relation in the language selected. tateduring this process the contents of the dimpn
lists may change dynamically in concordance witagbagments of the grammar. Finally use the buttons
at the bottom of the relation annotation windovAtl, Change or Deletethe relation annotation.

3.2 Generating language

To see the effects of your annotations you can dpehanguagewindow by choosingVindow-
Languagefrom the menu bar of the GCE console. This windalivdisplay a linguistic expression for
the focussed concept of the active CRM browseerAbtively, you can make the CRM browser display
natural language instead of the concept namesoBodchoose the language of your choice from the
Display-Languagenenu of a CRM browser. Note that this may takeestme, depending on the
number and complexity of the concepts to be digulay

3.3 Importing and exporting annotations

Although interactively adding and modifying concepid relation annotations is useful in many
contexts, it is not a very convenient way to ddannotations. For this purpose the concept aradioel
annotations can be represented in an ascii fildapping Interchange Format (.MIF). The format aéth
file is described in appendix B. To export or impgour annotations respectively choasmguage-
Exportor Language-Imporfrom the menu bar of a CRM browser. Note thatsystem assumes that you
store your .MIF files in the ROIS subdirectory eallSOURCES.

When concept annotations contain references to ksrthat do not yet exist in the language model they
will be added automatically during the languageompprocess. It is also no problem to import a .MIF

file more than once into the same file. Mappingat tire already there will be ignored by the import
process.

4 Adding languages to the generator

In this section we will describe the steps you $thtéake when your application needs natural languag
phrases to describe concepts from a Grail modedt #e will say some more about the Dutch, English
and Finnish grammars, lexicons, and annotations.prbcess of adding a language will be illustréted
an example that adds a fragment of the German &gegto a simple Grail model on disorders that
involve the ear.

4.1 The Finnish, English, and Dutch language models

You will find the Finnish, English, and Dutch grarars in Appendix A. The Dutch and English
grammars are very straightforward. Here you carhsgewe use Segment Grammar to create compound
nouns. Using the featuedfixRolewe create the subcategor®fixNP, PrefixADJR, SuffixNP and
SuffixADJPwith the corresponding values of affixRole, and sfegments where these phrase categories
function as modifier, e.gNP-modifier-PrefixNPAs a consequence of using {refix/suffix feature

values is that in the surface string no spacessried before/after the head of the phrase.

You will find the corresponding Grail model, arfitetlanguage models for Finnish, English, and Dutch
in the software distribution. In addition you wilhd the corresponding LIF and MIF files to popeldhe
language models and semantic models respectivéheisubdirectorgources

4.2 An extended example: adding German to the generator

Below you will find a step by step description @ivWhto add a new language to the generator. Notdttha
is very useful to have a look at the example grammaxicons and mappings of English and Dutch
before you actually start to work on your own laage. It may also be very helpful to use Humpty and
the GCE to look at how the other languages have lmeplemented.

4.2.1 Determine which concepts have to be described

Analyse the way your application uses the Grail ehashd create a small collection of concepts tleatn
description in the language to be added. Espedi@ik/ for concepts that are composed ‘on the #g,
these will actually require the generator to predumew’ phrases.

The example test set could consist of e.g.,
(Inflammation which < hasLocation
(Mastoid which < hasLaterality left >) hasChronicit y acute >)

4.2.2 Create a Language model

Creating a language model involves the followirepst

1. Define the language fragment

2. Analyse the fragment

3. Create the grammar

4. Create and populate the language model

The following sections will go into each of theseps in turn

4.2.2.1 Define the language fragment

Produce a collection of example phrases

Produce a small collection of example phrasesuloatd describe the Grail concepts in your tesirset
satisfactory way. A German example phrase thatdcdascribe the example concept coulddiee akute
Entziindung des linken Mastoids

Word categories

Create a list of word categories that are usetiénekample sentences. This would produce:
Article(eine; des)
Noun (Entziindung; Mastoids)
Adjective (akute; linken)

Phrase categories

Create a list of phrase categories that play aindlbe example sentences. This would produce:
NounPhrase (eine akute Entziindung ; des linkenaidlask
AdjectivalPhrase (akute; linken)

4.2.2.2 Analyse the fragment

Analyse word forms

Make an inventory of the forms of the words thatym role in the example phrases. Produce a list of
alternative forms, e.g.,

Article: eine; ein einer; eines,.. der, die, dass dtc..

Adjective: akute, akut, akuter etc..

Noun: Mastoid, Mastoids, etc

Define features

This stage requires some experience, but mostenspigakers will be able to produce a collection of
grammatical, and ungrammatical combinations of woFdtom this activity one can infer rules like:
The form of an adjective depends on the gendettlamdase of the noun it modifies. The form of the
article depends on the gender and the case ofailne etc. Of course, a good grammar book for your
language can be very useful at this stage. Thése will help you to produce a list that associates
features with word categories. E.g.,

Avrticle: case; gender; definite
Adjective: case; gender
Noun: case; gender

Define lexeme categories for each lemma category

If you think this lists of word forms and featura® more or less complete define names for therlexe
categories that are needed in your fragment. Usiiall quite easy to find out what the basic fashihe
words of each lemma category looks like. For examipl most European languages the basic form of
Nouns is the singular nominative form. Note thasicforms are already built into the Generic
Linguistic framework, and in most languages somed@de.g., prepositions) only exist in one formtwic
will automatically be the basic form.

Analyze constituent structure to define segments

Now you have to analyse the example phrase witeago its constituent structure. You should bee t
syntactic functions that are presented in Partthefdocumentation. For the example phrase thiddvou
produce:

Noun Phrase

N~

determiner modifier head modifier
Article: Adjectival Phrase Noun: Noun Phrase
eine | Entziindung
head determinel modifier head
Adjective: Article: Adjectival Phrase Noun:

akute des | Mastoids

head
Adjective:

linken

figure 45 Example of a constituent structureiofe akute Entziindung des linken Mastoids

From a small collection of structures like this yean infer which segments you will have to defifieis
would produce:

NounPhrase, determiner, Article
NounPhrase, modifier, AdjectivalPhrase
NounPhrase, head, Noun

NounPhrase, modifier, NounPhrase
AdjectivalPhrase, head, Adjective

Define phrase categories

The noun phrasges linken Mastoidsiodifies its parent phrase. It is said to be mdlenitive. In order
for a noun phrase to modify some other noun phitasestbe in the genitive form. For this reason we
will later define a subcategor@enitiveNounPhrasto the language model, which will have the feature
case: genitive. This will allow us to substitute gtegmenhNounPhrase, modifier, NounPhragéh
NounPhrase, modifier, GenitiveNounPhrase

Analyse how features influence the actual word form

Now we have to analyze which features of a worch(h&) should be in agreement with other
constituents of the phrase. Again, a grammar hasidbbyour language will proof very useful at this
stage. For example the features case and genderadticle should agree with the case and gendéeof
head of the parent constituent (the noun). We earesent this dependency by defining the shared
features of the segments involved.

NounPhrase, determiner, Article: gender; case
NounPhrase, head, Noun: gender; case
NounPhrase, modifier, AdjectivalPhrase: gendeseca
NounPhrase, modifier, GenitiveNounPhrase: <none>
AdjectivalPhrase, head, Adjective: gender; case

Analyze word order in the example sentences toelsftigment positions

The last step in the specification of the gramrmsdbpiassign positions to segments. A position is a
cardinal number which indicates the ordinal positd the foot of the segment relative to the other
children of the root of that segment within the stitnent structure of the phrase. When assigning
positions to segments you should take into accthattnot all positions have to be taken by a ctunestit
at all times. The following positions will do firfer the example fragment.

NounPhrase, determiner, Article: second
NounPhrase, modifier, AdjectivalPhrase: fourth

NounPhrase, head, Noun: sixth
NounPhrase, modifier, GenitiveNounPhrase: seventh

AdjectivalPhrase, head, Adjective: second

Note that the first, third, fifth and eighth positifor the children of a noun phrase are still wopded.
In the extended German example grammar providégppendix A. You will see that they are used for
other segments that have noun phrase as a root.

4.2.2.3 Create the basic language model (grammar)
Produce the grammar file in GRM format (see secd).

/I Filetype: Grammar file (GRM)

/I Author: Wim Claassen

/I File: german.txt

/I Comments: german test grammar;

LANGUAGE German

/I WORDCATEGORIES
CATEGORY Noun
FEATURES case=nominative number=singular gender
/I (eine akute Entziindung des linken MASTOIDS)
FORM
"singular genitive"
FEATURES number=singular case=genitive
END
END

CATEGORY Article
/I only singular nominative and genitive forms, a dd others as required
/I definite nominative
/I der is basic form
FEATURES definite=+ number=singular gender=mascul ine case=nominative
/I die
FORM
"definite singular feminine nominative"
FEATURES definite=+ number=singular gender=feminin e case=nominative
END
/I das
FORM
"definite singular neuter nominative"
FEATURES definite=+ number=singular gender=neuter case=nominative
END
/I definite genitive
/Il des
FORM
"definite singular masculine genitive"
FEATURES definite=+ number=singular gender=masculi ne case=genitive
END
/I des (eine acute Entziindung DES linken Mastoids)
FORM
"definite singular neuter genitive"
FEATURES definite=+ number=singular gender=neuter case=genitive
END
Il der
FORM
"definite singular neuter genitive"
FEATURES definite=+ number=singular gender=feminin e case=genitive
END
/I indefinite nominative
I ein
FORM
"indefinite singular masculine nominative"
FEATURES definite=+ number=singular gender=neuter case=nominative
END
I ein
FORM
"indefinite singular neuter nominative"
FEATURES definite=+ number=singular gender=neuter case=nominative
END
/I eine (EINE acute Entziindung des linken Mastoid s)
FORM
"indefinite singular feminine nominative"
FEATURES definite=+ number=singular gender=neuter case=nominative

10

END
/I indefinite genitive:
Il eines
FORM
"indefinite singular masculine genitive"
FEATURES definite=+ number=singular gender=neuter
END
Il eines
FORM
"indefinite singular neuter genitive"
FEATURES definite=+ number=singular gender=neuter
END
Il einer
FORM
"indefinite singular feminine genitive"
FEATURES definite=+ number=singular gender=neuter
END
Il etcetera
END

CATEGORY Adjective
/I basic form = positive degree, which is not use
/I should also have feature to indicate presence/
FEATURES definite number gender case
FORM "definite singular masculine nominative"
FEATURES definite=+ number=singular gender=masc
END
/I (eine AKUTE Entziindung des linken Mastoids)
FORM "definite singular feminine nominative"
FEATURES definite=+ number=singular gender=masc
END
/I (eine acute Entziindung des LINKEN Mastoids)
FORM "definite singular neuter genitive"
FEATURES definite=+ number=singular gender=neut
END
/I etcetera (51 forms in total)
END

/I PHRASE CATEGORIES
CATEGORY NounPhrase

FEATURES gender case number definite
END

CATEGORY AdjectivePhrase
FEATURES case gender number definite
END

it
/I EXTRA CATEGORIES
1
CATEGORY GenitiveNP
BASE NP
FEATURES case=genitive
END

M

/I SEGMENTS

/I NP

SEGMENT NP determiner ART
FEATURES case number gender definite
DESTINATION PRIMARY=2

END

SEGMENT NP modifier ADJP
FEATURES case number gender definite
DESTINATION PRIMARY=4

END

SEGMENT NP head Noun
FEATURES gender case affixRole
DESTINATION PRIMARY=6

END

SEGMENT NP modifier GenitiveNP
DESTINATION PRIMARY=7
END

/I ADJP
SEGMENT ADJP head ADJ
FEATURES gender definite affixRole

case=genitive

case=genitive

case=genitive

d

absense of article

uline case=nominative

uline case=nominative

er case=genitive

11

DESTINATION PRIMARY=2
END

END German

4.2.2.4 Create and populate the language model

Use Humpty as described in section 2.3 to add trelsvfrom your collection of test phrases to the
language model. Add the word forms and featuregeasired.

4.2.3 Create linguistic annotations

In this step you will ‘link’ your new language mddeith the Grail model used by your applicationrsEj
you should tag the wrappers of your Grail model #redrelations you don't want to see expressed
linguistically. In our example this is not needbdt section 3.1 describes how to do this. More
background information on wrapper and suppressiggihg can be found in part | of the
documentation. Then you should annotate the coadeph the Grail model with the lemmas from the
new language, and third, you should annotate cer&@ations in the model with frames in your
language model. Finally Below we will go into eaaftthese activities in turn.

4.2.3.1 Concept annotations

Concept annotations are mappings from a concedpieigrail model to a lemma in a language model.
They can be added using GCE as described in se&tlo he concept annotations for the example are
presented below in MIF form:

CONCEPT Mastoid Noun "Mastoid"
CONCEPT Inflammation Noun "Entziindung"
CONCEPT left Adjective "linke"

CONCEPT acute Ajective "akut"

4.2.3.2 Relation annotations

Relation annotations specify how the defining crit@f a composite concepts map to syntactic frames
They are described below: In the example conckpegettypes of criteria are used that express
localization, laterality, and chronicity respectize

(Inflammation which < hasLocation
(Mastoid which < hasLaterality left >) hasChronicit y acute >)

You will have to decide how you want the gener&boexpress criteria like these. In the example we
chose to express the localisation of some disardére body using a GenitiveNp. Laterality of pasts
the body and chronicity of disorders on the othemchcan both be expressed by an adjectival phfase.
relation annotations for the example fragment amve below (in MIF format).

RELATION BodyPart hasLaterality lateralityValueType
FRAME NP-modifier-ADJP

RELATION Disorder hasChronicity chronicityValueType
FRAME NP-modifier-ADJP

RELATION Disorder hasLocation BodyPart
FRAME NP-modifier-GenitiveNP

criterion to lemma

The example fragment requires no frames with @it lemmas or segments. However, if we would
prefer to produce the phrasme akute Entziindung in dem linken Mastoidr the example phrase we
would have to modify the relation annotation:

RELATION Disorder hasLocation BodyPart
FRAME NP-modifier-GenitiveNP

to produce:

RELATION Disorder hasLocation BodyPart
FRAME NP-modifier-PNP Preposition "in"

12

which means that the localization of a disordea ibody part is preferably expressed using a
prepositional noun phrase in conjunction with thepositionin.

13

Appendix A: Grammarsin Humpty format (.GRM)
Finnish

/I Lines starting with two slashes are not interpre ted by Humpty
I

/I Filetype: Humpty grammar (.grm)

/I Author: ~ Wim Claassen

/I File: finnish.grm

/I Comments: Finnish grammar;

/I Last Edit: 20-10-98

/I indicate start of grammar file for finnish langu age:
LANGUAGE Finnish

/I enable word affixes:
CATEGORY WordCategory

FEATURES affixRole
END

/I assign features to word categories and
/I define word forms of these categories
CATEGORY Noun
/I here the statement FEATURES case=nominative nu mber=singular
Il has two effects:
/I 1) nouns have case and number
/I 2) the basic form of noun is nominative singul ar
FEATURES case=nominative number=singular
/I define additional forms:
FORM "genitive singular"
FEATURES case=genitive number=singular
END
FORM "translative singular"
FEATURES case=translative number=singular
END
FORM "patrtitive singular"
FEATURES case=patrtitive number=singular
END
FORM "essive singular"
FEATURES case=essive number=singular
END
FORM "inessive singular"
FEATURES case=inessive number=singular
END
FORM "adessive singular"
FEATURES case=adessive number=singular
END
FORM "illative singular"
FEATURES case-=illative number=singular
END
FORM "allative singular"
FEATURES case=allative number=singular
END
FORM "elative singular"
FEATURES case=elative number=singular
END
FORM "ablative singular"
FEATURES case=ablative number=singular
END
FORM "instructive"
FEATURES case=instructive
END
FORM "abessive singular"
FEATURES case=abessive number=singular
END
END

CATEGORY Adjective

FEATURES case=nominative number=singular
FORM "genitive singular"

FEATURES case=genitive number=singular
END
FORM "translative singular"

FEATURES case=translative number=singular
END
FORM "patrtitive singular"

FEATURES case=patrtitive number=singular

14

END
FORM "essive singular"

FEATURES case=essive number=singular
END
FORM "inessive singular"

FEATURES case=inessive number=singular
END
FORM "adessive singular"

FEATURES case=adessive number=singular
END
FORM "illative singular"

FEATURES case-=illative number=singular
END
FORM "allative singular"

FEATURES case=allative number=singular
END
FORM "elative singular"

FEATURES case=elative number=singular
END
FORM "ablative singular"

FEATURES case=ablative number=singular
END
FORM "instructive"

FEATURES case=instructive
END
FORM "abessive singular"

FEATURES case=abessive number=singular
END

END

/I assign features to phrase categories

CATEGORY NounPhrase
FEATURES number case

END

CATEGORY AdjectivalPhrase
FEATURES number case
END

/I assign case to PNP and set value to partitive
CATEGORY PNP

FEATURES case=partitive
END

o,
/I define subcategories to phrase categories

/I define NominativeNP as subcategory to NP

/I set case to nominative (feature case inherited from
CATEGORY NominativeNP
BASE NP
FEATURES case=nominative
END
CATEGORY AccusativeNP
BASE NP
FEATURES case=accusative
END
CATEGORY GenitiveNP
BASE NP
FEATURES case=genitive
END
CATEGORY PartitiveNP
BASE NP
FEATURES case=partitive
END
CATEGORY lllativeNP
BASE NP
FEATURES case=illative
END
CATEGORY InessiveNP
BASE NP
FEATURES case=inessive
END

CATEGORY ElativeNP

NP)

15

BASE NP
FEATURES case=elative
END

CATEGORY AllativeNP
BASE NP
FEATURES case=allative
END

CATEGORY AdessiveNP
BASE NP
FEATURES case=adessive
END

CATEGORY AblativeNP
BASE NP
FEATURES case=ablative
END

CATEGORY TranslativeNP
BASE NP
FEATURES case=translative
END

CATEGORY EssiveNP
BASE NP
FEATURES case=essive
END

CATEGORY AbessiveNP
BASE NP
FEATURES case=abessive
END

CATEGORY InstructiveNP
BASE NP
FEATURES case=instructive
END

M
/I define segments

/I segment with root=NP, function= modifier, foot=A
/I position=3, and shared features={case, number}
SEGMENT NP modifier ADJP

DESTINATION PRIMARY=3

FEATURES case number
END

SEGMENT NP modifier GenitiveNP
DESTINATION PRIMARY=2
END

SEGMENT NP prefix NP
DESTINATION PRIMARY=4
END

SEGMENT NP prefix ADJP
DESTINATION PRIMARY=4
END

SEGMENT NP head Noun
DESTINATION PRIMARY=5
FEATURES case number

END

SEGMENT NP modifier PartitiveNP
DESTINATION PRIMARY=6
END

SEGMENT NP modifier InessiveNP
DESTINATION PRIMARY=6
END

SEGMENT NP modifier IllativeNP
DESTINATION PRIMARY=6
END

SEGMENT NP modifier AllativeNP
DESTINATION PRIMARY=6

DJP,

16

END

SEGMENT NP modifier ElativeNP
DESTINATION PRIMARY=6
END

SEGMENT NP modifier AblativeNP
DESTINATION PRIMARY=6
END

SEGMENT NP modifier AdessiveNP
DESTINATION PRIMARY=6
END

SEGMENT NP modifier TranslativeNP
DESTINATION PRIMARY=6
END

SEGMENT NP modifier EssiveNP
DESTINATION PRIMARY=6
END

SEGMENT NP modifier AbessiveNP
DESTINATION PRIMARY=6
END

SEGMENT NP modifier InstructiveNP
DESTINATION PRIMARY=6
END

SEGMENT NP modifier PNP
DESTINATION PRIMARY=6
END

/I PNP inherits all of the above plus PREP:

SEGMENT PNP functor PREP
DESTINATION PRIMARY=1
END

SEGMENT ADJP head ADJ
DESTINATION PRIMARY=2
FEATURES case number

END

/I indicate end of grammar file
END Finnish

17

English

/I Author: Wim Claassen

/I Last Edit: 20-10-98

/l Comments: English grammar;
/I File: english.grm
LANGUAGE English

N
/I LEXICAL CATEGORIES

CATEGORY Noun

FEATURES countNoun determinable number=singular

END

CATEGORY Atrticle
FEATURES number=singular definite=positive
FORM ‘indefinite singular'
FEATURES number=singular definite=negative
END
FORM ‘definite plural’
FEATURES number=plural definite=positive
END
FORM ‘indefinite plural’
FEATURES number=plural definite=negative
END
END

/I MainVerb
CATEGORY MainVerb
FEATURES participle=noParticiple tense=present
FORM 'past participle'
FEATURES participle=pastParticiple
END
FORM 'present participle'
FEATURES participle=presentParticiple
END
END

/I Coordinating and Subordinating Conjunctions
CATEGORY Conjunction

FEATURES number determinable
END

CATEGORY CoordinatingConjunction
FEATURES number=plural determinable=negative
END

Hni
/l PHRASE CATEGORIES

CATEGORY NounPhrase
FEATURES number=singular definite determinable
END

CATEGORY AdjectivalPhrase
FEATURES number definite
END

CATEGORY NominativeNP
BASE NP
END

CATEGORY NonNominativeNP
BASE NP
END

CATEGORY GenitiveNP
BASE NonNominativeNP
END

CATEGORY IndeterminableNP
BASE NounPhrase
FEATURES determinable=negative
END

CATEGORY RelativeS
BASE Sentence

18

FEATURES participle
END

CATEGORY PastParticipleS

BASE RelativeS

FEATURES participle=pastParticiple
END

CATEGORY PresentParticipleS

BASE RelativeS

FEATURES participle=presentParticiple
END

nitnn
/I SEGMENTS

/I NP

SEGMENT NP head Noun
DESTINATION PRIMARY=6
FEATURES number

END

SEGMENT NP determiner Article
DESTINATION PRIMARY=2
FEATURES number definite

END

SEGMENT NP modifier IndeterminableNP
DESTINATION PRIMARY=5
END

SEGMENT NP modifier ADJP
DESTINATION PRIMARY=4
END

SEGMENT NP modifier PNP
DESTINATION PRIMARY=7
END

SEGMENT NP modifier PresentParticipleS
DESTINATION PRIMARY=7
END

SEGMENT NP modifier PastParticipleS
DESTINATION PRIMARY=7
END

/I Conjunction is head of ConjunctiveNP so should h
/I as head of 'normal NP’
SEGMENT NP head Conjunction
DESTINATION PRIMARY=6
FEATURES number determinable
END

SEGMENT NP conjunctionElement NP
DESTINATION PRIMARY=1
END

/I PNP inherits all of the above plus PREP:

SEGMENT PNP functor Preposition
DESTINATION PRIMARY=1

END

/I ADJP

SEGMENT ADJP head Adjective
DESTINATION PRIMARY=2

END

s

SEGMENT PresentParticipleS head MainVerb
DESTINATION PRIMARY=1
FEATURES participle

END

SEGMENT PresentParticipleS directObject NP
DESTINATION PRIMARY=2
END

SEGMENT PastParticipleS head MainVerb

ave the same position

19

DESTINATION PRIMARY=1
FEATURES participle
END

SEGMENT PastParticipleS modifier PNP
DESTINATION PRIMARY=2
END

END English

20

Dutch

/I Author: Wim Claassen
/I Created: 06-02-98
/I LastEdit: 20-10-98

LANGUAGE Dutch

CATEGORY WordCategory
FEATURES affixType
END

CATEGORY Verb
FEATURES tense person number participle infinitiv
syntacticallyReflexive reciprocal
separableVerb syntacticallyTransitive
END

CATEGORY MainVerb

FEATURES number=plural tense=present
FORM 'present singular 1'

FEATURES number=singular tense=present person=f
END
FORM 'present singular 23'

FEATURES number=singular tense=present person=s
END
FORM 'past singular'

FEATURES number=singular tense=past
END
FORM 'past plural'

FEATURES number=plural tense=past
END
FORM 'past participle'

FEATURES participle=pastParticiple
END
FORM 'present participle'

FEATURES participle=presentParticiple
END

END

CATEGORY Noun
FEATURES gender countNoun determinable number=sin

FORM plural
FEATURES number=plural
END
END

CATEGORY Pronoun
FEATURES person gender number case
END

CATEGORY PersonalPronoun
FEATURES case=nominative
FORM nonNominative

FEATURES case=nonNominative
END
END

CATEGORY PossessivePronoun
FEATURES case=nominative
FORM nonNominative

FEATURES case=nonNominative
END
END

CATEGORY Article
FEATURES gender=nonNeuter number=singular definit
FORM "definite plural"
FEATURES definite=positive number=plural
END
FORM "definite singular neuter"
FEATURES definite=positive number=singular gend
END
FORM "indefinite singular”
FEATURES definite=negative number=singular
END
FORM "indefinite plural”
FEATURES definite=negative number=plural

eVerb

irstPerson

econdOrThirdPerson

gular

e=positive

er=neuter

21

END
END

CATEGORY Adjective
FEATURES number=singular gender=neuter definite=neg
inflection
FORM inflected
FEATURES inflection=positive
END
END

CATEGORY PhraseCategory
FEATURES affixRole
END

CATEGORY Sentence
FEATURES number person tense aspect mood
END

CATEGORY NounPhrase
FEATURES number person gender definite case
END

CATEGORY AdjectivalPhrase
FEATURES number gender definite
END

CATEGORY NominativeNP
BASE NP
FEATURES case=nominative
END

CATEGORY NonNominativeNP
BASE NP
FEATURES case=nonNominative
END

CATEGORY AccusativeNP
BASE NonNominativeNP
FEATURES case=accusative

END

CATEGORY DativeNP
BASE NonNominativeNP
FEATURES case=dative

END

CATEGORY GenitiveNP
BASE NonNominativeNP
FEATURES case=genitive

END

CATEGORY PrefixADJP
BASE ADJP
FEATURES affixRole=prefix
END

CATEGORY SuffixADJP
BASE ADJP
FEATURES affixRole=suffix
END

CATEGORY PrefixNP

BASE NP

FEATURES affixRole=prefix
END

CATEGORY SuffixNP

BASE NP

FEATURES affixRole=suffix
END

CATEGORY PNP
FEATURES case=nonNominative
END

CATEGORY NP
FEATURES number=singular
END

ative diminutive

22

SEGMENT NP head Noun
DESTINATION PRIMARY=6
FEATURES gender affixRole

END

SEGMENT NP determiner ART
DESTINATION PRIMARY=2
FEATURES number gender definite

END

SEGMENT NP modifier ADJP
DESTINATION PRIMARY=4
FEATURES number gender definite

END

SEGMENT NP modifier PNP
DESTINATION PRIMARY=7
END

/I PNP inherits all of the above plus PREP

SEGMENT PNP functor PREP
DESTINATION PRIMARY=1

END

/IADJP

SEGMENT ADJP head ADJ
DESTINATION PRIMARY=2
FEATURES gender definite affixRole

END

SEGMENT ADJP modifier PNP
DESTINATION PRIMARY=1
END

/I Morphological segments
SEGMENT NP prefix PrefixADJP

DESTINATION PRIMARY=5
END

SEGMENT NP prefix PrefixNP
DESTINATION PRIMARY=5
END

/I'S segments for simple active phrases:
SEGMENT S head MV
DESTINATION PRIMARY=2
FEATURES number person tense
END

SEGMENT S subject NominativeNP
DESTINATION PRIMARY=1
FEATURES number person

END

SEGMENT S directObject NonNominativeNP
DESTINATION PRIMARY=4
END

SEGMENT S indirectObject NonNominativeNP
DESTINATION PRIMARY=3
END

SEGMENT S modifier PNP
DESTINATION PRIMARY=5
END

/I Coordinating and Subordinating Conjunctions (bot
CATEGORY Conjunction

FEATURES number=plural determinable=negative
END

/I Conjunction is head of ConjunctiveNP so must hav
/I as head of NP
SEGMENT NP head Conjunction
DESTINATION PRIMARY=6
FEATURES number determinable
END

SEGMENT NP conjunctionElement NP
DESTINATION PRIMARY=1

h children of Conjunction)

e the same position

23

END

END Dutch

24

Appendix B: Format of interchange files (MIF; .LIF)

The source files for language models and semarddeta are in Lexicon Interchange Format (.LIF) and
Mapping Interchange Format (.MIF) respectively.d®ethese formats are described in EBNF notation.

<LIF>

<language>

<lemmas>

<lemma>
<lemma_category>
<lemma_category_full>

<lemma_category_abbrev> ::=

<spelling>
<features>
<feature>
<feature_name>

<feature_value>

<forms>

<form>
<lexeme_category>
<string>

<MIF>

<suppress>
<wrapper>

<concept>

<attribute>
<concept_annotation>
<relation_annotation>
<frame>

<concept>
<segment>
<phrase_category>
<function>

<constituent_category>

LANGUAGE <language> <lemmas>
<string>
1{<lemma>}
LEMMA <lemma_category> <spelling> [<feses>] [<forms>]
<lemma_category_full> | <lemoadegory abbrev>
Noun | Adjective | Arédl Preposition | Adverb | ProperName | PN |
CoordinatingConjunction | SubordinatingConjunctipMainVerb |
AuxiliaryVerb | CopulaVerb | CardinalNumber | Perat®ronoun |
PossessivePronoun | DemonstrativePronoun | Intgivegronoun |
IndefinitePronoun | ReflexivePronoun | Reciprocatidun |
RelativePronoun |
N | ADJ | ART | PREBY | COOCON | SUBCON | MV | AV | CV
| CARD | PERSPRO | POSSPRO | DEMONPRO | INTERPRO |
INDEFPRO | REFLPRO | RECIPRO | RELPRO
“<string¥
FEATURES 1{<feature>}
<feature_name><feature_value>
number | gender | definited jgaienominal | inflection | affixRole |
countable | determinable | diminutive form | tejsspect | participle |
syntacticallyTransitive | syntacticallyReflexiveefiprocal |
separableVerb | diminutiveForm
singular | plural | masculifeminine | neuter | + (positive) | -
(negative) | nominative | genitive | dative | aative | translative |
partitive | essive | inessive | adessive | illatizkative | elative |
ablative | instructive | abessive | prefix | irffsuffix | past | present |
future | perfect | imperfect | presentParticigdagtParticiple
FORMS 1{<form>}
<lexeme_category> <spelling>
“<string>"
1{a..z | A..Z| 0..9}

LANGUAGE <language> 0{<suppress>} 0{<wrper>}
0{<concept_annotation >}0{<relation_ annotation >}
SUPPRESS <concept> <attribute> epinc
WRAPPER <concept> <attribute> <comeep
<string>
<string>
CONCEPT <concept> 1{<lemoaéegory> <spelling>}
RELATION <concept> <ditrie> <concept> 1{<frame>}
FRAME <segment> [<lemma_category> <lapgb
[WITH <segment> [<lemma_category> <spelling>]]]
<string>
<phrase_category>-<function>-<conetit_category>
NP | S| PP | ADJP | PNPYRAD
head | maodifier | functor | deterarin prefix | postfix | subject |
directObject | indirectObject | complement | aaxili| particle |
predicate | conjunctionElement
<lemma_category_abbteyrhrase_category> |
<other_phrase_category>

<other_phrase_category> ::= <string>

25

