

Generating Multilingual Natural Language

Expressions for Grail Concepts

Part I: Theory

Wim Claassen
University of Nijmegen

NICI

 2

Contents

1 Introduction.. 1

1.1 Grail ... 1
1.2 Why NLG?.. 2
1.3 How could this work?.. 2

2 Syntactic issues in Multilingual natural language generation... 3
2.1 Generic linguistic framework .. 3
2.2 Language Specific components .. 5

2.2.1 Grammar specification ... 5
2.2.2 Populating the Lexicon... 6

2.3 Syntactic tree formation in Segment Grammar ... 6
2.3.1 Syntactic trees.. 6
2.3.2 Word order... 10
2.3.3 Word form ... 11

3 Generating phrases to describe Grail concepts .. 11
3.1 Annotating grail concepts with linguistic entities ... 12

3.1.1 Concept annotations ... 12
3.1.2 Relation annotations and syntactic frames... 12

3.2 Modeling schemes and filtering... 15
3.2.1 Feature-State scheme ... 15
3.2.2 Surgical Procedures.. 16
3.2.3 Unwanted criteria... 17
3.2.4 Tagging and filtering.. 17

3.3 The Natural Language Generation algorithm ... 18
3.3.1 Generating the constituent structure ... 19
3.3.2 Serializing the constituent structure.. 20
3.3.3 Producing the surface string ... 21

4 References ... 21

 1

1 Introduction
The documentation on the ROIS based Natural Language Generator developed within the context of the
Galen In Use project consist of three papers: (1) a theoretical paper on the design of the generator, (2) a
description of its implementation, and (3) a manual describing how the generator is to be used.
The current paper provides some theoretical background on the Multilingual Natural Language
Generator that is under development at NICI within the context of the Galen In Use project. The goal is
to develop a multilingual natural language generator that produces natural language descriptions of
conceptual structures in a concept representation language called Grail. The generator is based on
Segment Grammar, and implemented using the knowledge representation tool ROIS (Relation Oriented
Inference System). The generator consists of a generic algorithm (implemented in ROIS NPL) that is
applied to language specific lexicons and grammars. The key design requirements are flexibility,
extendibility, usefulness of the generator in practical applications, and the possibility to reuse the
language specific lexicons and grammars in a multilingual natural language analyzer. The initial target
languages are Dutch, English and Finnish.
This paper assumes a basic understanding of the medical concept representation language Grail. If you
are unfamiliar with notions such as ‘subsumption hierarchy’, ‘prototypes’ and ‘defining criteria’ please
consult some introductory material on Grail. In addition we assume that you are familiar with ROIS and
the ROIS development tools Idefix and Mole. In order to be able to use the natural language generation
software package to create a generator for a particular language you will also have to be familiar with
both the basic linguistic notions concerning syntactic structures in general and the actual grammar rules
of that language. The rest of this section will provide a high-level overview of the problems, and the
solutions adopted.

1.1 Grail
The input structures to the generator are Grail concepts such as (1) and (2) below1.

(1) (Fracture which < hasLocation Femur >)
(2) (SurgicalDeed which <

 isCharacterisedBy
(performance whichG < isEnactmentOf

(Removal which <
 actsSpecificallyOn

(Abscess which < hasLocation ExternalEar
 hasSeverity (Severity which <
 hasAbsoluteState severe >) >)

 hasExtend complete >) >)
 isCharacterisedBy

(nonPerformance whichG < isEnactmentOf
(Incision which < actsSpecificallyOn Pinna >) >) >)

Concept (1) could be described in English by e.g., the phrases fracture of the femur or femoral fracture
and concept (2) by the phrase removal of severe abscess of external ear without incision of auricle.

An important aspect of the formal concept representation language Grail is that it is compositional.
Primitive concepts, such as Fracture and Femur, can be combined into composite Grail concepts2 such as
(Fracture which < hasLocation Femur >). A knowledge engineer defines the primitive concepts of
interest and a set of rules that specify how concepts can be combined into more complex composite

1 For matters of convenience Grail concepts are often presented by lines of Grail source code that could be
evaluated by a Grail source code compiler such as the GCE Workspace. Note however that the written presentation
of the canonical form of the resulting concept will often differ more or less substantially from the source code
presentation. The canonical presentation of example (2) for instance, will not contain the concept SurgicalDeed, as
in the current CORE model SurgicalDeed is an alias of the composite concept (Process which < hasClinicalRole
SurgicalRole >). Instead the primitive concept Process and its defining criterion hasClinicalRole-SurgicalRole will
appear.

In the rest of this paper composite Grail concepts are presented in canonical form. The syntax of the canonical
presentation is similar to Grail, only the semantics differ. The major reason for using the canonical presentation is
that it immediately shows what the base and the defining criteria of the composite concept are.
2 Composite Grail concepts are sometimes called prototypes or particularisations. I prefer to use the less technical
term composite concepts.

 2

concepts. A given set of primitive concepts and combination rules defines a so-called model of concepts,
which is the set of all concepts that can be described using the primitive concepts and the combination
rules. In this sense Grail is said to be a generative concept representation language.

1.2 Why NLG?
In essence Grail is intended as a conceptual interlingua between medical applications and coding
schemes in the medical domain. However, although concepts from a Grail model can be presented
visually to humans by expressions in the Grail language, structures such as (2) above clearly illustrate
that non-Grail experts will need a more comprehensible presentations such as a natural language
phrases.

If all primitive and composite concepts of a Grail model could be expressed using single content words
(e.g., the noun fracture), producing multilingual natural language descriptions for Grail concepts would
be a rather trivial and uninteresting table look-up task. The problem becomes interesting however, when
single words are not sufficient to describe a composite Grail concept. In that case it is necessary to
describe the concept using a more complex natural language phrase, possibly containing prepositional
phrases, adjectives and other modifiers.

1.3 How could this work?
The hypothesis is that a natural language description of a Grail concept can be produced by combining
the words that express the individual components of the concept in a syntactically correct way. For
example: (Fracture which < hasLocation Femur >) can be described by the English noun phrases
fracture of the femur or femoral fracture. These two phrases are alternative natural language descriptions
that combine the English words femur, femoral and fracture using a prepositional phrase and an
adjectival phrase respectively.

Now in order to be able to produce sensible natural language descriptions of Grail concepts we have to
annotate3 the individual concepts of a Grail model with the individual lemmas of the natural language,
and in addition we have to annotate the concept combination rules of a Grail model (represented by so-
called statements) to the phrase and word combination rules (the grammar) of the natural language.

The example above requires e.g., that the Grail concept Fracture maps to the English noun fracture and
the Grail concept Femur is annotated with the English noun femur. Next to these concept annotations the
example above requires that the Grail combination rule X hasLocation Y is annotated with
“prepositional phrase + preposition of” such that the phrase that expresses X (fracture) is modified by a
prepositional phrase that expresses Y (of the femur).

Note that this rule does not imply that e.g., (Femur which isLocationOf Fracture) can be expressed as
femur of the fracture. Instead, to describe this example concept properly would require an additional
annotation that maps X which isLocationOf Y to a noun phrase describing X (femur) which should be
modified by an adjectival phrase describing Y (fractured) to produce the more acceptable fractured
femur.

In order to provide for a multilingual generator that is easy to extend and to maintain we chose to design
a generic (language independent) generation algorithm that applies language specific grammars and
lexicons to produce utterances in multiple languages. Within the Galen In Use project the emphasis is
on the generation of noun phrases but we felt that the generator should also be able to produce complete
sentences. We chose Segment Grammar (Kempen, 1987; Kempen ea 1987) as the linguistic framework,
because it has shown to be well-suited for both natural language generation and interpretation.

The rest of this paper is structured as follows: section 2 focuses on syntactic issues of the natural
language generation process. Semantic issues are dealt with in section 3 where we describe the way Grail
concepts are ‘translated’ into phrases. Then section 0 describes how to produce the language specific
data required for a particular language (grammar rules, lemmas/word forms required and semantic
mappings). In section 0 we describe how you can use the development and maintenance tools to use these

3 Traditionally, within the GALEN and GALEN-IN-USE projects the term linguistic annotations is used to refer to
the semantic mappings between a Grail model and a natural language.

 3

data to build your own language and semantic models. Finally section 0 provides a detailed description
of the implementation of the natural language generation modules.

2 Syntactic issues in Multilingual natural language generation
Strictly speaking, the term ‘multilingual’ applies to any natural language generator that is able to
produce phrases in at least two natural languages. However, in my opinion a truly multilingual
generator should consist of a single generic (language independent) component and language specific
components for each of the individual languages covered. A major design goal of the present project is to
limit the language specific components of the generator to the language specific data that reside in the
lexicon and the grammar. As a consequence the generator should have no need for any language specific
algorithms, and extending the generator to cover an extra language would only require the specification
of the grammar and a lexicon.

Although the focus of the present paper is on generation, the next sections are also applicable to the
natural language analysis process. The application of generic multilingual generation and analysis
algorithms requires a generic linguistic framework that can support the complete range of syntactic
phenomena that are present in each of the individual language fragments to be covered. This framework
is described below in implementation independent terms. The actual ROIS implementation of the
framework is presented in section 3.1.

2.1 Generic linguistic framework
This section goes into the entities and relations that form the building blocks of the Generic Linguistic
Framework. Why and how these objects are used will be described in the sections that follow. The objects
used within the generic linguistic framework are defined in table 1. We distinguish eight elementary
entities and one composite entitity. The elementary entities are: lemma categories, features, feature
values, lexeme categories, lexemes, spellings, phrase categories, syntactic functions, positions and
segments. Please observe the following naming conventions: the names of lemma categories, phrase
categories, and positions start with a capital letter. Lemma- and phrase categories can also be referred to
by their abbreviations which are presented in the table within parentheses. The names of the other
elementary entities start with a small letter.

Feature-value pairs are composed of a feature and a value. They are represented by joining together the
feature and the value using an equals sign (=). For example, number=singular. Segments are composite
entities which are defined by a triple consisting of a phrase category, a syntactic function, and a phrase-
or lemma category. A segment’s name is formed by joining together the names of its elements using
hyphens as indicated in the table. The role of segments will be described in more detail in section 2.3.

lemma category Noun (N) | Adjective (ADJ) | Article (ART) | Preposition (PREP) | Adverb (ADV) |
ProperName (PN) | CoordinatingConjunction (COOCON) | SubordinatingConjunction
(SUBCON) | MainVerb (MV) | AuxiliaryVerb (AV) | CopulaVerb (CV) | CardinalNumber
(CARD) | PersonalPronoun (PERSPRO) | PossessivePronoun (POSSPRO) |
DemonstrativePronoun (DEMONPRO) | InterrogativePronoun (INTERPRO) |
IndefinitePronoun (INDEFPRO) | ReflexivePronoun (REFLPRO) | ReciprocalPronoun
(RECIPRO) | RelativePronoun (RELPRO)

feature number | gender | definite | case | prenominal | inflection | affixRole | countable |
determinable | tense | aspect | participle | syntacticallyTransitive | syntacticallyReflexive |
reciprocal | separableVerb | diminutiveForm

feature value singular | plural | masculine | feminine | neuter | + (positive) | - (negative) | nominative |
genitive | dative | accusative | translative | partitive | essive | inessive | adessive | illative |
allative | elative | ablative | instructive | abessive | prefix | infix | suffix | past | present |
future | perfect | imperfect | presentParticiple | pastParticiple

lexeme category <string> (e.g., basic noun, uninflected adjective, plural noun)
lexeme <spelling>
spelling <string>
phrase category NounPhrase (NP) | PrepositionalNounPhrase (PNP) | AdjectivalPhrase (ADJP) |

AdverbialPhrase (ADVP) | Sentence (S)
syntactic function head | modifier | functor | determiner | prefix | postfix | subject | directObject |

indirectObject | complement | auxiliary | particle | predicate | conjunctionElement

 4

position 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
feature-value pair <feature>, = , <value>
segment <phrase category>, -, <syntactic function>,-,<phrase category> | <lemma category>

table 1 Elementary en composite entities within the generic linguistic framework

 5

The entities of the linguistic framework are involved in the following relations (table 2):

lemma category feature n, n
lemma lemma category n, 1
lexeme category lemma category n, 1
lexeme category feature-value pair n, n
lexeme lemma n, 1
lexeme lexeme category n, 1
lexeme spelling n, 1
phrase category feature n, n
segment feature n, n
segment position n, 1
number singular | plural n, 1
gender masculine | feminine | neuter | nonNeuter n, 1
definite + | - n, 1
case nominative | genitive | dative | accusative | translative | partitive | essive |

inessive | adessive | illative | allative | elative | ablative | instructive |
abessive

n, 1

prenominal + n, 1
inflection + | - n, 1
affixRole prefix | infix | suffix n, 1
countable + | - n, 1
determinable + | - n, 1
tense past | present | future n, 1
aspect perfect | imperfect n, 1
participle presentParticiple | pastParticiple n, 1
syntacticallyTransitive + | - n, 1
syntacticallyReflexive + | - n, 1
reciprocal + | - n, 1
separableVerb + | - n, 1
diminutiveForm + | - n, 1

table 2. Possible relations between syntactic entities and corresponding cardinality values

Informally the contents of the table is described as follows: lemma categories (e.g., noun) have zero or
more features (e.g. number). Lemmas (e.g., liver) have exactly one lemma category (e.g. noun). Lexeme
categories (e.g., plural noun) have exactly one lemma category (e.g., noun) and zero or more feature-
value pairs (e.g., number=plural). Lexemes (e.g., livers) have exactly one lemma (e.g. liver), exactly one
lexeme category (e.g., plural noun) and exactly one spelling (e.g., “livers”). Phrase categories (e.g., noun
phrase) have features (e.g., number). Segments (e.g., noun phrase-head-noun) have zero or more features
and a position. In addition, not all combinations of features and feature values are legal feature-value
pairs. They can only be combined in the ways indicated in table 2.

2.2 Language Specific components
The generic linguistic objects and relations defined in section 2.1 are used to define a grammar and a
lexicon for a particular language fragment. The definition of the grammar precedes the creation of the
lexicon as the grammar specifies first, which features possibly apply to the individual lemma categories
and second, which lexeme categories are associated with the lemma categories and what their feature-
value pairs are.

2.2.1 Grammar specification
The specification of the grammar of a particular language involves the following: (the second and the
third item in this list are optional).

• Specification of the features associated with lemma and phrasal categories, e.g., an English grammar
could specify that Noun has the feature named number, whereas in a Dutch grammar Noun would
have the features named gender and number.

 6

• Specification of subcategories of lemma and phrase categories, e.g., the definition of a German
grammar requires adding GenitiveNounPhrase as a subcategory to the phrase category NounPhrase.

• Specification of the default features-value pairs of particular lemma and phrase categories, e.g., a
sensible default feature-value pair of NounPhrase in many grammars could be: case=nominative

• Specification of the lexeme categories that are associated with the individual lemma categories. Each
individual lemma category (e.g., Noun) has a lexeme category that represents its basic form
(basic:noun), and possibly additional lexeme categories that represent its inflected forms (e.g.,
plural:noun). For example, in English the basic form of the lemma category Noun has the feature-
value pair number=singular, and in Dutch the basic form of the lemma category Adjective has the
feature-value pairs number=singular, definite=- , and gender=neuter.

• Specification of the segments that constitute the rules of syntax of the language, e.g., by defining the
segment NounPhrase-head-Noun, assigning it to position 5, and specifying its shared features:
gender, definite, and number.

2.2.2 Populating the Lexicon
After the syntactic features that apply to the individual lemma- and phrase categories have been
specified, and the lexeme categories have been defined, the lexicon can be populated. This means that
lemmas and lexemes and their features are added to the lexicon. For example, we could add the noun
lever (liver) to a Dutch lexicon. The syntactic category of this lemma is noun and its gender is
nonNeuter. A Dutch noun has two lexeme categories, one to represent its basic form (number=singular),
and one to represent its plural form (number=plural). So the noun lever has two lexemes: the basic form
(number=singular) spelled lever, and the plural form (number=plural) spelled levers. Note that the
syntactic category and the feature-value pairs of the lemma are inherited by its lexemes.

2.3 Syntactic tree formation in Segment Grammar
Below I will provide a more detailed account of segments and how they are used within Segment
Grammar to create constituent structures of natural language phrases. Within the linguistic community
constituent structures of many different sorts are commonly used to describe the syntactic structure of
natural language phrases. Both in natural language analysis and in natural language generation
constituent structures provide a useful intermediate representation. During the generation process
grammar and semantic rules specify how conceptual structures are transformed, first into a constituent
structure and subsequently into a string of words that makes up the output phrase. Conversely during
parsing the individual words of the input phrase are combined with the grammar and semantic rules to
produce a constituent structure, and subsequently to produce a representation of the meaning of the
phrase.

Within the linguistic community many different types of grammars are used such as Lexical Functional
Grammar, Systemic Grammar, Tree Adjoining Grammar, Montague Grammar, Transformational
Generative Grammar, and several Phrase Structure Grammars. Segment Grammar shows some
similarities with Lexical Functional Grammar and Tree Adjoining Grammar. It was originally developed
as a performance grammar for human sentence production and comprehension. As such it has been used
to develop models of the human syntactic tree formation process. There are however several reasons for
adopting Segment Grammar in automatic multilingual natural language processing . First it has been
applied successfully in the past both in parsers and in generators. Second, it is a relatively simple
framework that distinguishes rules of syntactic structure from linear precedence rules. Third, in
comparison with other grammars, Segment Grammar produces syntactic structures that show a close
resemblance to the conceptual structures as we see them in Grail and other ontological systems.

2.3.1 Syntactic trees
Constituent structure are often presented graphically as a tree (figure 1) . In the following sections I will
describe how Segment Grammar is used to produce constituent structures like this. This process is called
syntactic tree formation.

 7

Noun Phrase

headmodifier

Noun:
inflammation

modifier

AdjectivalPhrase

head

Adjective:
acute

Preposition:
 of

Article:
the

PrepositionalNoun Phrase

headdeterminerfunctor

Noun:
liver

Article:
an

determiner

figure 1 Example of a constituent structure of an acute inflammation of the liver

2.3.1.1 Segments

Segment Grammar is named after its elementary building blocks which are called segments. A segment
is presented visually by a graph consisting of two labeled nodes connected by a labeled arc. Segments are
presented in vertical orientation. The top node is called the root of the segment and the bottom node is
called the foot (see figure 2).

Root

Foot

function

figure 2 Structure of a segment. The top node is called root the bottom node is called foot

The root of a segment is a phrase category, the labeled arc is a syntactic function, and the foot is either a
phrase category or a lexical category (see figure 3 below).

NounPhrase

Noun

head

NounPhrase

Article

determiner

figure 3 Two example segments

Segment Grammar distinguishes five phrase categories4 (e.g., Sentence, AdjectivalPhrase), fourteen
syntactic functions (e.g. head, modifier) and twenty lexical categories (e.g., Noun, Preposition).

Using these categories and functions we could (in principle) create 5 * 14 * (5 + 20) = 1750 different
segments. However, the grammar of an individual language will typically have only around fifty different

4 For purposes that will be explained in more detail in section XX we do not use the commonly applied phrase
category Prepositional Phrase but introduce a non-standard phrase category we termed PrepositionalNounPhrase
instead.

 8

segments, and the grammar for a small fragment of a language like the descriptions of surgical
procedures will only involve around ten segments.

During the tree syntactic tree formation process, instances of segments are combined into syntactic trees
by a process called unification. During this process the root or foot of one segment is merged with the
root or foot of another. For example, by unifying the roots of the two segments of (figure 3)we can
create a simple tree structure (see figure 4).

Noun Phrase

Noun:
infection

head

Article:
a

determiner

figure 4 Constituent structure after unification of two segments

2.3.1.2 Syntactic features

Next to syntactic and lexical categories and syntactical functions, Segment Grammar distinguishes
syntactic features (e.g., number, gender) and the corresponding feature values (singular, masculine).
Like other grammars Segment Grammar allows only certain combinations of features and values. The
syntactic feature number for example is allowed to take the values singular and plural but not the value
genitive.

The grammar of an individual language specifies which particular features may apply to the syntactic
and lexical categories. In English for example nouns have the feature number, but prepositions have not.

Whenever two categories are unified the feature-value pairs of these categories will be unified. For now it
suffices to state that during that process the unified category will have the features of both categories. For
example if we unify a noun phrase with the feature-value pair number=singular with a noun phrase with
case=genitive we obtain a noun phrase with the feature-value pairs: number=singular and case=genitive
(see figure 5). Note that feature-value pairs are presented in a box connected to the constituent they
belong to.

NounPhrase

Noun

head

case=genitive NounPhrase

Article

determiner

number=plural

NounPhrase

Noun

head

case=genitive
number=plural

Article

determiner

figure 5 Unifying the noun phrases of the segments at the top produces the syntactic tree at the bottom

 9

2.3.1.3 Feature sharing

Clearly the mechanisms described so far are not enough to account for agreement phenomena that exist
in many European languages. In English sentences for example, the conjugation of the verb depends
(among other things) of value the person of the subject phrase (Viz., I remove versus he removes). In
Segment Grammar agreement is realized by a mechanism called feature sharing. In section 2.3.1.1 a
segment has been defined by a root, a syntactic function and a foot. To these three elements we add the
set of features that are shared between the root and the foot. For example, a feature that is shared
between the root and the foot of the English segment NounPhrase-head-Noun is number.

When the root and foot share a feature this implies (by definition) that the value of the feature of the foot
is equal to the value of the feature of the root, and vice versa. This means that a change to the value of a
shared feature (e.g. as the result of unification) will have consequences for both the root and the foot of
the segment. For instance, consider the segments unified in figure 6. Assume that the shared feature sets
of both segments contain the feature number. Before the unification the segment NounPhrase-head-Noun
has no values for its shared feature number (note that the values of shared features are presented in a box
that is connected to both the root and the foot of the segment). After unification the value of the feature
number of NounPhrase-head-Noun (and consequently of Noun) has been set to plural.

NounPhrase

Noun

head

case=genitive NounPhrase

Article

determiner

number=plural

NounPhrase

Noun

head

Article

determiner

case=genitive

number=plural

number=plural

figure 6 Shared features and unification. Unification of the segments at the top
produces the tree at the bottom

The syntactic tree formation mechanisms described so far cover the generation of the basic constituent
structure of the phrases of a language. Note that before we can actually start constructing constituent
structures we have to specify the grammar of that language in terms of the segments and their shared
features. In addition we need a lexicon that specifies the words of the language in terms of their syntactic
category and features. An example of a constituent structure is presented in (figure 7). Note that the
feature values of the individual constituents have been left out for presentation reasons only.

 10

NounPhrase

headmodifier

Noun:
inflammation

modifier

AdjectivalPhrase

head

Adjective:
acute

Preposition:
 of

Article:
the

PrepositionalNounPhrase

headdet. functor

Noun:
liver

figure 7 Example constituent tree of the phrase: acute inflammation of the liver

2.3.2 Word order
Being able to create unordered constituent structures is the first step in producing natural language
phrases, assigning order to the constituent structure is the next. For this purpose we now introduce
position as an element of the definition of a segment. The basic principle is quite simple. The position of
a segment is a cardinal number. This cardinal number indicates the ordinal position of the foot of the
segment relative to the other children of the root of that segment. In syntactic tree presentations the
position of a segment is presented between parentheses just below the label that represents the function of
the segment. Below we present an example of four English segments including their positions.

head
(position=4)

Noun

modifier
(position=3)

Adjectival Phrase AdjectiveArticle

head
(position=1)

determiner
(position=1)

NounPhrase NounPhrase NounPhrase AdjectivalPhrase

figure 8 Example positions of four English segments

If we apply the ordinal positions of the segment definition to the individual branches of the constituent
structure it becomes a constituent tree. The order of the children of each constituent is determined by the
definition of the corresponding segment (figure 9).

 11

NounPhrase

head
(position=4)

Noun:
inflammation

modifier
(position=3)

AdjectivalPhrase

head
position=1

Adjective:
acute

Article:
an

determiner
(position=2)

figure 9 Adding order to the constituent structure of the phrase: an acute inflammation

Given the ordered constituent tree the sequential ordering of the individual leafs can be derived very
easily to produce the phrase an acute inflammation.

2.3.3 Word form
Although the example sentences presented so far look quite all right from a grammatical point of view
this is mainly due to the fact that they are all in English which is a morphologically simple language.
Consider the Dutch phrase * een acuut ontsteking which is an ungrammatical translation of the English
phrase an acute inflammation (figure 9). This phrase is ungrammatical as the uninflected form of an
adjective (acuut) can only be used in indefinite singular neuter noun phrases. All other noun phrases
require the inflected form of the adjective. The constituent tree of een acute ontsteking (an acute
inflammation) is presented in figure 10.

NounPhrase

head

Noun:
ontsteking

modifier

AdjectivalPhrase

head

Adjective:
acute

Article:
een

determiner

number=singular
definite=negative

number=singular
gender=masculine

number=singular
gender=masculine
definite=negative

number=singular
gender=masculine
definite=negative

figure 10 The constituent tree of the Dutch phrase: een acute onsteking including the feature value pairs
of the individual constituents.

In the example we see that the adjective acute does not posses the feature-value pairs that justify usage of
the uninflected form, hence the inflected form will be selected.

3 Generating phrases to describe Grail concepts
In section 1.3 we explained that producing natural language descriptions of Grail concepts requires first,
that the individual concepts of a Grail model are annotated with the individual lemmas of the natural

 12

language, and in addition, that the concept composition rules of that Grail model are annotated with the
phrase and word combination rules (the Segment Grammar) of the natural language. In section 2 we
described a linguistic framework that enables us to represent Segment Grammars and lexicons for
multiple languages. In section 3.1 we will first describe the linguistic annotations that represent the
semantic relations between Grail concepts on the one hand and linguistic objects (lemmas, segments) on
the other. Then, in section Error! Reference source not found. we will go into two standard modeling
schemes that are commonly applied in Grail, that require the introduction of the notion of filtering.
Finally, section 3.3 presents a description of the natural language generation algorithm.

3.1 Annotating grail concepts with linguistic entities

3.1.1 Concept annotations
Producing a natural language phrase that linguistically realizes a Grail concept requires a model of the
lexical semantics of the language. This model describes how particular grail concepts can be expressed
by a lemma in a particular language. For example the Grail concept Liver can be expressed by the Dutch
noun lever. This type of annotation is called a concept annotation. Concept annotations typically
involve mappings to lemmas that are traditionally called content words, i.e., nouns, adjectives, adverbs,
and verbs.

Note that concept annotations can apply to both primitive and composite Grail concepts. In both cases
the lemma mapped to is supposed to describe the concept completely, that is, including all of its defining
criteria.

3.1.2 Relation annotations and syntactic frames.
In anticipation of the description of the natural language generation algorithm (in section 3.3) you
should know that a composite Grail concept can be described by adding modifier phrases to a natural
language phrase that describes one of its formal ancestors. Every defining criterion that distinguishes the
concept from this ancestor (often called topic in this context) will be expressed as a modifier phrase, c.f.,
(Fracture which hasLocation Femur) in section 1.3. How a certain criterion can be expressed using
natural language is determined by the so-called relation annotations: mappings from conceptual
relations to syntactic frames in the language. Below I will go into relations and syntactic frames
respectively.

3.1.2.1 Relations

First, recall that composite Grail concepts are defined by a non-composite concept called base and a set
of defining criteria (attribute-value pairs). A defining criterion can be said to represent a particular
relation between two Grail concepts. For example the relation called hasLocation between the concepts
(Fracture which hasLocation Femur) and Femur. In the following sections relations will be presented as
triples of the form (<topic concept>, <attribute>, <value concept>), for example: (Fracture,
hasLocation, Femur). Note that subsumption relations may exist between relations. For example, the
relation (Fracture, hasLocation, Femur) is subsumed by the relation: (Disorder, hasLocation, Bodypart).
Note that relations should be distinguished from Grail statements. In Grail, sensible statements are the
rules that specify which concepts and attributes can be combined into a composite concept, and
grammatical statements specify which sensible statements are allowed. Using relation annotations
instead of statement annotations to specify how certain defining criteria are to be realised linguistically
allows the annotation of relations that have no counterparts as grammatical or sensible statements in the
CORE model.

3.1.2.2 Syntactic frames

In principle, syntactic frames are syntactic constituents of varying complexity. A collection of English
example frames is presented in figure 11. A frame has a exactly two phrase categories that will be unified
with other constituents during the syntactic tree formation process. They are called the topic constituent
and the value constituent. The are presented in figure 11 in italics and bold face respectively.

 13

In its most simple form a syntactic frame consists of a single segment e.g., the left most frame:
NounPhrase-modifier-AdjectivalPhrase. Its topic constituent is NounPhrase and its value constituent is
AdjectivalPhrase.

modifier

Noun Phrase

NounPhrase

modifier

PrepositionalNounPhraseAdjectival Phrase

Preposition: of

functor

NounPhraseNounPhrase

modifier

PastParticipleS

MainVerb: mix

head

NounPhrase

modifier

PrepositionalNounPhrase

modifier

Preposition: in

functor

(a) (b) (c) (d)

figure 11 Example frames for English. Topic constituents are in italics, value constituents in bold type

face

As illustrated in figure 11(c and d), more complex frames may involve additional segments. The role
played by syntactic frames is best illustrated by an example. Consider again the concept (Fracture which
hasLocation Femur). Suppose that in English the concept Fracture is annotated with the noun fracture.
As a consequence the concept Fracture can be described by the constituent NounPhrase-head-
Noun:fracture. In addition, suppose that the relation (Disorder, hasLocation, Bodypart), which subsumes
the relation (Fracture, hasLocation, Femur), is annotated with the frame in figure 11(a): NounPhrase-
modifier-AdjectivalPhrase. This relation annotation implies that the composite concept’s criterion
hasLocation Femur can be expressed by unifying the constituent describing Fracture with the topic
constituent of this frame. In addition, an adjectival phrase describing the value of the criterion
(AdjectivalPhrase-head-Adjective:femoral) can be unified with the value constituent of this frame. This
process is illustrated in figure 12. The frame is presented in a square box.

 14

head

Noun:fracture

NounPhrase

modifier

head

Adjective:femoral

AdjectivalPhrase
(Fracture which

hasLocation Femur)

head

Noun:fracture

NounPhrase

head

Adjective:femoral

AdjectivalPhrase

modifier

NounPhrase

AdjectivalPhrase

Fracture

Femur

(Disorder, hasLocation, BodyPart)

figure 12.Role of a simple syntactic frame in the syntactic tree formation process

Of course, the phrase femoral fracture is not the only sensible realization of the concept (Fracture which
hasLocation Femur). This concept could also be expressed by the phrase fracture of femur. This would
require an annotation of (Disorder, hasLocation, Bodypart) with the frame in figure 11(c). The role of
this frame in the syntactic tree formation process is illustrated in figure 13.

 15

head

Noun:fracture

NounPhrase

functor

Preposition:of

PrepositionalNounPhrase

modifier

NounPhrase

PrepositionalNounPhrase

Fracture

(Disorder, hasLocation, BodyPart)

head

Noun:femur

Femur

head

Noun:fracture

NounPhrase

functor

Preposition:of

modifier

PrepositionalNounPhrase

head

Noun:femur

(Fracture which hasLocation Femur)

figure 13.Role of a complex syntactic frame in the syntactic tree formation process

3.2 Modeling schemes and filtering
Before I can go into a more detailed description of the natural language generation algorithm a little
more needs to be explained about the so-called modeling schemes and filtering. First, the current CORE
model applies composite concepts in a number of standard ways to represent features, processes and
surgical procedures to work around certain limitations on the expressiveness of the Grail formalism.
Although these and other, similar, representations are essential to the usability of the CORE model, in
many cases they would produce natural descriptions that are simply too verbose to be useful. In this
section I will describe these structures, why they were introduced, and how we can use the filtering
mechanism to produce less verbose natural language for the concepts involved.

3.2.1 Feature-State scheme
In early versions of the CORE model, a concept’s features were represented by simple criteriaFor
example, a severe inflammation used to be represented by:

(Inflammation which <hasSeverity severe>)

Although this worked fine in many cases, it became problematic when other things concerning the
severity of the inflammation (e.g., the method used to measure it) were to be represented. In order to
handle this, features are no longer represented by attributes but by concepts. E.g., the feature severity is
represented by the concept Severity which is a descendant of the concept Feature. The value of the

 16

feature is represented by particularizing the feature using the attribute hasState. A severe inflammation ,
for example, will be represented by:

(Inflammation which <hasSeverity (Severity which < hasState severe >) >)

Constructs like this are useful e.g., to represent clinical findings as in:

(Inflammation which <hasSeverity (Severity which < hasState severe
 asMeasuredBy methodX >) >)

In order to express criteria modeled like this no special arrangements would have to be made if the
concepts (Severity which < hasAbsoluteState mild >) , (Severity which < hasAbsoluteState moderate >)
and (Severity which < hasAbsoluteState severe >) would be annoated with e.g., the lemmas Adjective:
mild, Adjective: moderate and Adjective: severe respectively. However, it would be much more
convenient to map these lemmas directly to the individual severity values mild, moderate, and severe and
still produce the same output.

3.2.2 Surgical Procedures
To represent surgical procedures a modeling scheme similar to the feature-state scheme is used. A major
modeling problem here was to account for the fact that surgical procedures typically involve multiple
(apparently more primitive) surgical deeds such as removal of abscess involving partial reconstruction of
bone tissue. As Grail does not provide built-in primitives to handle conjunctions, the attributes
isCharacterisedBy and isMainlyCharacterisedBy have been introduced to produce concepts such as
presented in figure 14.

 (Process which <
 hasClinicalRole SurgicalRole

isMainlyCharacterisedBy (Removing which <
 hasClinicalRole Surgical Role
 actsSpecificallyOn Absce ss >)
isCharacterisedBy (Reconstructing which <
 hasClinicalRole SurgicalRole
 actsOn Bone >) >)

figure 14 Modeling scheme to represent surgical procedures

The second problem with the representation of surgical procedures was that Grail has no built-in
mechanism to handle negations, so surgical procedures that involve the exclusion of a particular deed
could not be represented easily. For this purpose another scheme has been introduced. This layer wraps
up an individual SurgicalDeed in a composite concept using the concepts Performance or
NonPerformance and the attribute isEnactmentOf to produce concepts like the one shown in figure 15:

(Process which <
 hasClinicalRole SurgicalRole
 isMainlyCharacterisedBy

 (performance which <
 isEnactmentOf
 (Removing which <
 hasClinicalRole SurgicalRole
 actsSpecificallyOn
 (Abscess which <
 hasLocation ExternalEar
 hasSeverity (Severity which <
 hasAbsoluteState s evere >) >)
 hasExtend complete >) >)
 isCharacterisedBy
 (nonPerformance which <
 isEnactmentOf (Incising which <
 hasClinicalRole SurgicalRo le
 actsSpecificallyOn Pinna >) >) >)

figure 15 The use of wrapper concepts in the conceptual representation of a surgical procedure

Although these modeling schemes are very useful as a representation mechanism, they complicate the
natural language generation proces considerably. For example, a natural language phrase that describes
the surgical procedure presented in figure 15 in a straightforward manner is surgical procedure that
involves performing complete surgical removal of a severe abscess of the external ear and that
involves not performing surgical incising of the auricle. Although this phrase accurately describes the
concept, in most contexts a less verbose description such as complete removal of a severe abscess of the

 17

external ear without incising of the auricle will be preferred. However, in order to produce such less
verbose phrases we would have to add concept-lemma mappings for all concepts of the form
(Process which < isMainlyCharacterisedBy (performance which < isEnactmentOf X >) >) which
would be very inconvenient and time consuming. Instead we would prefer to add such mappings only to
the descendants of SurgicalDeed that could be substituted for X.

3.2.3 Unwanted criteria
Next to the modeling schemes des cribed above, the CORE model features certain defining criteria that
would produce unwanted results when expressed by the natural language generator. These criteria
involve e.g., tha attributes ApplicationAttribute, RoleDesignatingAttribute and their descendants.
Although they distinguish a concept from its ancestors they are not suppose to have any effect on the way
the concept is described using natural language. Consider for example, the concept (Closing which
hasClinicalRole SurgicalRole). It could be described very well by the phrase surgical closing, but in
many contexts the adjective surgical would be redundant and the phrase closing is preferred. In principle
this could be handled by annotating both concepts with the noun closing. However, if we prefer never to
express the difference between general actions such as opening, closing, drilling, shaving etc. and their
surgical counterparts we would have to add concept annotations for each of them. For this reason we
introduce the notion of suppressing which will be explained in section 3.2.4.2.

3.2.4 Tagging and filtering
To provide a solution to the problems concerning modeling schemes and unwanted criteria described in
the previous sections we use the notions of wrapper and suppression tagging and filtering.

3.2.4.1 Wrapper tagging

The natural language generation problems with both feature-state and surgical procedure concepts are
solved by a single mechanism. First, the relations involved in these modeling schemes are tagged as so-
called wrappers. Second, the natural language generator applies a filter mechanism to unwrap concepts
that involve such a wrapper relation. Tagging a certain relation (Topic, attribute, Value) as a wrapper
implies tagging all the relations that involve descendants of Topic, attribute, and Value as a wrapper.
For example, assume that the relation (Feature, hasState, State) has been tagged as a wrapper. The filter
mechanism will unwrap the concept (Severity which < hasAbsoluteState severe >) to produce the
concept severe, as Severity is a descendant of Feature, hasAbsoluteState is a descendant of hasState, and
severe is a descendant of State.
The filter mechanism is also applied to the surgical procedures described in 3.2.2. Recall that surgical
procedures involve two relations: (Process, isMainlyCharacterisedBy, performance) and (Enactment,
isEnactmentOf, SurgicalDeed). To unwrap a surgical procedure requires tagging both relations as
wrappers. During the natural language generation process the filter mechanism wil unwrap the concept
(Process which < isMainlyCharacterisedBy (performance which < isEnactmentOf Removal >) in two
steps. First it unwraps the concept to (performance which < isEnactmentOf Removal >). Subsequently,
(performance which < isEnactmentOf Removal >) is unwrapped to produce the concept Removal.
(performance is a descendant of Enactment and Removal is a descendant of SurgicalDeed).

3.2.4.2 Suppression tagging

In order to prevent the linguistic realisation of certain criteria for certain concepts, relations can be
tagged to be suppressed. For example, in order to prevent the expression of the criterion
hasClinicalRole-SurgicalRole in the example presented in 3.2.3, the relation (SurgicalDeed,
hasClinicalRole, SurgicalRole) is tagged as a relation that is to be suppressed. The filter mechanism will
simply hide the criterion hasClinicalRole-SurgicalRole from the list of defining criteria of (Closing
which hasClinicalRole SurgicalRole).

3.2.4.3 Example

To illustrate the filter process figure 16 shows step by step how the concept at the top is filtered to
produce the concept at the bottom.

 18

(Process which <
 playsClinicalRole SurgicalRole
 isMainlyCharacterisedBy

 (performance which <
 isEnactmentOf
 (Removing which <
 playsClinicalRole SurgicalRole
 actsSpecificallyOn
 (Abscess which <
 hasLocation ExternalEar>
 hasSeverity (Severity which <
 hasAbsoluteState severe >) >)
 hasExtend complete >) >)
 isCharacterisedBy
 (nonPerformance which <
 isEnactmentOf (Incising which <

 playsClinicalRole SurgicalRole
 actsSpecificallyOn Pinna >) >)

(Process which <
 isMainlyCharacterisedBy

 (performance which <
 isEnactmentOf
 (Removing which <
 actsSpecificallyOn
 (Abscess which <
 hasLocation ExternalEar>
 hasSeverity (Severity which <
 hasAbsoluteState severe >) >)
 hasExtend complete >) >)
 isCharacterisedBy
 (nonPerformance which <
 isEnactmentOf (Incising which < actsSpecif icallyOn Pinna >) >)

(performance which <
 isEnactmentOf
 (Removing which <
 actsSpecificallyOn
 (Abscess which <
 hasLocation ExternalEar
 hasSeverity (Severity which <
 hasAbsoluteState severe >) >)
 hasExtend complete >)
 isCharacterisedBy
 (nonPerformance which <
 isEnactmentOf (Incising which < actsSpec ificallyOn Pinna >) >) >)

(Removing which <
 actsSpecificallyOn
 (Abscess which <
 hasLocation ExternalEar
 hasSeverity (Severity which < hasAbsoluteState severe >) >)
 hasExtend complete
 isCharacterisedBy
 (nonPerformance which <
 isEnactmentOf (Incising which < actsSpecif icallyOn Pinna >) >) >)

(Removing which <
 actsSpecificallyOn
 (Abscess which <
 hasLocation ExternalEar
 hasSeverity severe >)
 hasExtend complete
 isCharacterisedBy
 (nonPerformance which <
 isEnactmentOf (Incising which < actsSpecif icallyOn Pinna >) >) >)

figure 16 Unwrapping wrapped concepts

3.3 The Natural Language Generation algorithm
The input to the generation algorithm consists of a Grail concept, a target language, a parameter that
specifies whether or not articles should be used, and a parameter that specifies the intended phrase
category. The output is a phrase that expresses the input concept in the target language, and some error
diagnostics .

 19

The concepts in a Grail model represent classes of objects rather than individual instances. For example,
the concept (Fracture which < hasLocation Femur >) does not refer to a particular femur fracture
occurring in a particular patient. Instead it refers to any fracture of any femur. Grail concepts correspond
with types rather than with tokens. As a consequence the natural language generation algorithm
produces phrases that have generic reference. Although most European languages have multiple ways of
expressing generic reference the present generator applies the singular indefinite form. References to
named parts of the body are realized by the singular definite form.
The output phrase is produced in three steps (see figure 17). First, a constituent structure is generated for
the input concept. Then the constituent structure is serialized to produce a sequence of lemmas. Finally
the spellings of the appropriate word forms of the lemmas are concatenated to form the surface string.
These steps are described in the sections 3.3.1 to 3.3.3 .

(Inflammation which <hasChronicity acute >)Grail concept

Noun Phrase

Head

Noun:
ontsteking

Modifier

Adjectival Phrase

Head

Adjective:
acuut

Article:
een

Determiner

Number: singular
Definite: no

Number: singular
Gender: masculine

Number: singular
Gender: masculine
Definite: no

Number: singular
Gender: masculine
Definite: no

Constituent structure

Article:
een

Adjective:
acuut

Noun:
ontsteking

Number: singular
Definite: no

Number: singular
Gender: masculine

Number: singular
Gender: masculine
Definite: no

Lemma sequence

“een acute ontsteking”
Surface string

figure 17 From Grail concept to natural language phrase

3.3.1 Generating the constituent structure
The algorithm used to produce a constituent structure to describe a Grail concept Concept using a phrase
of type Phrase category in a language Language is described below in pseudo code. The basic algorithm
consists of two procedures that call each other recursively. The first is called GenerateConstituent, the
other ExpressCriterion. Variable names are presented in italics.

 20

PROC GenerateConstituent (Concept, PhraseCategory, Language, AddArticles) : Constituent
1) LemmaCategory :=
 SyntacticCategory(foot(GetSegment(Language, PhraseCategory, head, *)));
 Lemma := GetAnnotation(Concept, Language, LemmaCategory);
 IF Lemma EQUALS NIL
 THEN Base := filter(base(Concept))
 Criteria := filter(criteria(Concept))
 Look for concept annotations (with category LemmaCategory) at ancestors of
 Concept with a base identical to Base.
 IF annotations exist
 THEN Ancestor := most specific ancestor with annotation;
 Lemma := GetAnnotation(Concept, Language, Ancestor);
 Criteria := RemoveCriteria(Criteria, GetCriteria(Ancestor);
 ELSE Look for annotations at ancestors of Concept that have a
 base other than Base
 IF annotations exist
 THEN Lemma := the lemma that maps to the most specific ancesto r
 Criteria := NIL
 ENDIF
 ENDIF
 ENDIF
2) SegmentInstance := CreateSegmentInstance(PhraseCategory, head, Lemma)
3) Constituent := root(SegmentInstance)
4) FOREACH tuple < Attribute, Value> IN Criteria DO
 ExpressCriterion(Language, Concept, Constituent, AddArticles, Attribute, Value)
 ENDFOR
5) IF AddArticles = TRUE AND
 GetSegment(Language, NounPhrase, determiner, Article) NOT EQUALS NIL A ND
 Constituent has no branch of the form [Constituent, determiner, *] AND
 Constituent has no feature determinable: -
 THEN DeterminerConstituent :=
 CreateSegmentInstance (NounPhrase-determiner-Ar ticle);
 Constituent := Unify(Constituent, root(DeterminerConstituent);
 ENDIF
6) RETURN Constituent
END PROC

PROC ExpressCriterion(Language, Concept, Constituent, AddArticles, Attribute, Value)
1) Frame := retrieve the most specific frame for the relation (Concept, Attribute,
 Value) in Language, such that the SyntacticCategory(TopicConstituent(Frame))
 is compatible with the SyntacticCategor y(Constituent).
2) FrameInstance := Instantiate(Frame);
2) ValueConstituentCategory := SyntacticCategory(ValueConstituent(FrameInstance));
3) ValueConstituent :=
 GenerateConstituent (Value, ValueConstituentCategory, Language, AddArticles);
4) IF ValueConstituent NOT EQUALS NIL
 THEN Unify(Constituent, TopicConstituent(FrameInstance));
 Unify(ValueConstituent(FrameInstance), ValueConstituent);
 ELSE Repeat from step 1 with other frame;
 ENDIF
END PROC

3.3.2 Serializing the constituent structure
The input to this process is an unordered constituent structure. The constituent structure is processed
starting from the root. The root and its descendants are recursively expanded in the order that is specified
by the positions of the segments that were used to create the branches. Note that there is a special way to
handle segments that involve the same basic syntactic categories and functions but differ with respect to
their serial position. In French for example, the default serial position of the segment NP-modifier-ADJP
is after the segment NP-head-Noun. However, some French adjectives are prenominal instead
postnominal modifiers. In order to handle this the generic language model allows the definition of
segments based on other segments, e.g., the segment NP-modifier-PrenominalADJP as a child to NP-
modifier-ADJP. This segment can be defined to have a serial position which comes before NP-head-
Noun. Note that PrenominalADJP is an subcatategory of ADJP with the feature-value pair
prenominal=+. Now every adjective in the lexicon that has this feature as well will automatically turn up
before the noun. Of course the grammar must enable the feature prenominal for the categories Adjective
and ADJP, and prenominal must be a shared feature of the segment ADJP-head-Adjective in order to
enable the prenominal feature of a particular adjective to pass up to its parent constituent ADJP.

 21

3.3.3 Producing the surface string
The input to this process is a sequence of lemmas. First, every lemma in the sequence is substituted by
the spelling of one of its lexemes that has the right syntactic features. The individual spellings are
concatenated, inserting spaces as required. No spaces will be inserted between a word and its prefixes or
suffixes. A word can become a prefix or suffix through the feature affixRole which takes one of the
values prefix, infix, or suffix. In the grammar this requires first, to enable the affixRole feature for the
lexical and phrasal categories involved (e.g., Noun and NP), second, the definition of a phrase category
with that feature e.g., PrefixNP, third, the definition of a segment which triggers the affix (e.g., NP-
modifier-PrefixNP), and fourth, adding affixRole to the set of shared features of the appropriate lexical
segment (NP-head-Noun) in order to pass it down to the lexical level.

Finally the surface string should be processed in a language dependent way that accounts for phenomena
such as the usage of a versus an in English and the contraction of le into l’ in French depending on the
pronunciation of the word that follows, and e.g., the contraction of two words such as de le into du in
French and in het into er in Dutch. As the current version of the generation software has no built-in
provisions for substitutions like this, they should be implemented by the client application itself.

4 References
[Kempen 87] Kempen, G. (1987) A framework for incremental syntactic tree formation. In:

Proceedings of the Tenth International Joint Conference on Artificial
Intelligence (IJCAI'87), Milan.

[Kempen ea 87] Kempen, G., and Hoenkamp, E. (1987). An incremental procedural grammar
for sentence formulation. Cognitive Science, 11, 201-258.

 22

Generating Multilingual Natural Language

Expressions for Grail Concepts

Part II: Implementation

Wim Claassen
University of Nijmegen

NICI

Contents

1 Introduction.. 1
2 Using the ROIS system development kit ... 1

2.1 Object types .. 1
2.2 Network Programming Language... 1
2.3 NPL modules used in the current implementation.. 2

3 Language models.. 2
3.1 Representation of basic syntactic objects ... 2
3.2 Representation of Grammars ... 4
3.3 Representation of lexicons... 6
3.4 Representation of Syntactic trees ... 8
3.5 Representation of syntactic frames... 8
3.5.1.1.1.1.1.11 Overview of the implementation of the generic linguistic framework.. 9

4 Representation of relations in Grail .. 10
5 Linguistic annotation of Grail models ... 10
6 Filtering: criterion suppression and wrappers.. 11
7 Implementation of the generation algorithm.. 11

7.1 Generate ... 12
7.2 Syntax... 12
7.3 Semantics ... 12

8 API of Natural Language Generation modules .. 12
8.1 Features .. 12
8.2 Lexicon... 12
8.3 Segments .. 12
8.4 Constituents .. 12
8.5 Syntax... 13
8.6 Frames.. 13
8.7 GrailExtension.. 13
8.8 Semantics ... 13
8.9 Generate ... 13

9 External/interchange formats for Language models and Semantic models ... 13

 1

1 Introduction
The documentation on the ROIS based Natural Language Generator developed within the context of the
Galen In Use project consist of three papers: (1) a theoretical paper on the design of the generator, (2) a
description of its implementation, and (3) a manual describing how the generator is to be used.
This paper descibes the ROIS implementation of the generator.

2 Using the ROIS system development kit
This section provides an introductory overview of ROIS. For a thorough description of ROIS please
consult the document ROIS: a knowledge server (van der Haring, 1996). ROIS is a server application
that provides support to create and manipulate complex data structures that can be represented as graphs.
The ROIS server is programmed using Network Programming Language (NPL). The ROIS development
tool kit consists of the ROIS server, the ROIS debugger, The ROIS Network Programming Language
Compiler Idefix , and Mole which is a ROIS client application that provides a low-level view on ROIS
graphs, and an interface to call ROIS client tasks. ROIS graphs are stored in data files that are called
models.

2.1 Object types
ROIS graphs consist of objects of two basic types called nodes and links. There are three types of nodes:
node classes, link classes and qualifiers. ROIS links consist of a tail node, a link class, a qualifier, and a
head node, often presented as a quadruple (tail node, link class, qualifier, head node).
Among many other things, ROIS provides mechanisms for inheritance, basic inferencing, and type and
cardinality restrictions on link classes. It also supports the creation of instances of node classes.

2.2 Network Programming Language
The ROIS Network Programming Language (NPL) is a language that has a syntax similar to Modula 2.
It provides constructs to create and modify objects of the types described in the previous section. In
addition, it provides constructs to search, test and select graphs. ROIS allows users to define their own
procedures which are called tasks. ROIS tasks are defined within named modules. Tasks may call each
other recursively and they can be marked as hidden or client tasks. The former are only accessible to
tasks within the same module whereas the latter can be accessed (called) by ROIS client applications.
Unmarked tasks are available to all other modules, but not to ROIS client applications.
The ROIS NPL compiler Idefix compiles NPL modules to produce ROIS Virtual Machine (RVM) code.
For a description of Idefix please refer to the Idefix Reference manual. A module’s RVM code is loaded
dynamically by the ROIS server when a ROIS client application calls a task from that module.
Building a ROIS client application typically involves the following stages:
First the structure of the graphs used to implement the objects that are relevant in the client
application(s) are defined using Idefix. This is usually done by defining a task createModel that adds the
high-level node and link classes, and the qualifiers to a module’s basic model. Subsequently a number of
creator, selector and destructor tasks will be defined. After compilation the tasks defined can be tested by
calling them from the ROIS client application Mole. If required, the debugger presents debug
information to the NPL programmer. After the modules have been defined and tested a client application
is built to call the client tasks defined by the NPL programmer. Documentation on the ROIS client API is
available on the Web. The data flow of this process is illustrated in figure 18.
The natural language generation module uses a ROIS implementation of Grail that is available to clients
as Grail.RVM. It consists of a collection of client tasks that implement the Grail formalism. The client
applications that have been developed to create and maintain Grail models are called GCE (Galen Case
Environment) and GCE Workspace. A description of these tools can be found on the Web.

 2

ROIS server

Mole Idefix NPL
Compiler

ROIS model
(.GRA/.LAN/.SEM)

ROIS module
source (.IDE)

ROIS module
binary (.RVM)

NPL programmer Idefix NPL
editor

Client
Application

Client
programmer

User

Client
compiler

Debugger

figure 18: Data flow diagram of ROIS system development process.

2.3 NPL modules used in the current implementation
The modules that implement the natural language generation component are described in table 3.

Module name Description
Generic definition of basic language model
Features potential and actual features
Lexicon lemma categories; lemmas; lexeme categories; lexemes; spellings
Segments representation of segments
Constituents constituent trees
Syntax processing constituent trees; unification
Frames representation of syntactic frames
Grail retrieval of defining criteria of concepts (including Filtering)
GrailExtension tagging wrapper concepts; testing and manipulating criteria sets
Semantics basic semantic model; mappings between grail and language models (annotations)
Generate main tasks

table 3: Modules that implement the natural language generation component

3 Language models

Both the generic and the language specific linguistic information that is required for multilingual
natural language processing in ROIS are represented as data in ROIS models called language models
(data files with extension .LAN). There will exist one language model for each language covered. These
models consist of a built-in generic part that is identical in all models, and a language specific part for
each language that is build by defining the actual grammar, adding words, and word forms using
Humpty.

3.1 Representation of basic syntactic objects
The generic linguistic framework of elementary linguistic objects and elementary linguistic relations has
been implemented by creating a set of qualifiers, a hierarchy of ROIS node and link classes and by
providing several ROIS tasks that can be used to create the grammar and a lexicon for a particular
language. The top part of the node class hierarchy is shown in figure 19.

 3

topNode
 topNodeClass
 SyntacticObject
 Constituent
 LemmaCategory
 Noun
 basic:Noun
 plural:Noun
 Article
 basic:Article
 singular indefinite:Article
 ..
 Adjective
 basic:Adjective
 uninflected:Adjective
 Preposition
 basic:Preposition
 ..
 PhraseCategory
 NounPhrase
 AdjectivalPhrase
 PrepositionalNounPhrase
 ..
 FeatureValue
 GenderValue
 Masculine
 Feminine
 Neuter
 ..

figure 19: Top part of the node class hierarchy

Syntactic objects come in four kinds: lemma categories, lexeme categories, phrase categories and feature
values. The subclasses of LemmaCategory (Noun, Article etc.) and PhraseCatgeory (NounPhrase,
Adjectival Phrase, etc.) correspond with the word and phrase categories that are traditionally used within
the linguistic community. The same holds for the node classes that represent feature values (Masculine,
Feminine, etc.). Lexeme categories are children of their corresponding Lemma category, e.g., basic:Noun
and plural:Noun, and correspond with the different word forms that may exist for each lemma category.
The top part of the link class hierarchy is shown in figure 20:

 topLinkClass
 function
 head
 modifier
 determiner
 functor
 ..
 feature
 binaryFeature
 definite
 gender
 person
 number
 case
 ..
 spelling

figure 20: Top part of the link class hierarchy

We distinguish three general kinds of syntactic relations: function (e.g., head, modifier, etc.), feature
(gender, person, etc.) to represent syntactic functions and syntactic features respectively, and spelling to
associate lexemes with their spelling.
The generic linguistic framework contains high level sanctions involving the node and link classes
described above. They are created using a sanctioning qualifier called general. The following NPL code
(figure 21) creates that qualifier and adds the links to represent on a general level that phrase categories
can have two kinds of constituents: phrase categories and lemma categories.

 4

UPDATE @Model
 ADD QUALIFIER 'general'
 SANCTIONED BY systemSanction
 PROPERTIES sanctioning
 INHERITANCE normal
 ADD LINK PhraseCategory.hasConstituent.general. PhraseCategory
 ADD LINK PhraseCategory.hasConstituent.general. LemmaCategory

figure 21: NPL code to create general qualifier

There is no single general sanctioning relation between Constituent and FeatureValue. Instead for every
subclass of feature a general sanctioning link is created between Constituent and the corresponding
FeatureValue. For example to represent that the gender of a constituent can be masculine feminine or
neuter (figure 22).

UPDATE @Model
 ADD LINK Constituent.gender.general.GenderValue

 ..

figure 22: Sanctioning of feature values

These sanctioning links of the form Constituent.feature.general.FeatureValue (one for each subclass of
feature) are used in the specification of the language specific sanctions as will be described in section 3.2
below.

3.2 Representation of Grammars
The task Syntax.createModel creates a generic language model that incorporates the linguistic
framework described above including four additional qualifiers that support the specification of
grammars for particular languages, and the syntactic tree formation process described in Part I of the
documentation. The specification of the grammar of a particular language fragment involves (among
other things) the specification of the syntactic features that may apply to particular lemma and phrasal
categories, and the specification of the segments that are required to cover a relevant fragment of the
language. In order to support the specification of the grammar of an individual language the generic
language model incorporates the sanctioning qualifiers called potential and segment. Both qualifiers are
sanctioned by the qualifier general (figure 23).

UPDATE @Model
 ADD QUALIFIER 'potential'
 SANCTIONED BY general
 PROPERTIES sanctioning
 INHERITANCE normal
 ADD QUALIFIER 'segment'
 SANCTIONED BY general
 PROPERTIES sanctioning
 INHERITANCE normal

figure 23 Fragment of NPL code that creates the qualifiers potential and segment.

The qualifier potential is used to associate features with the lemma and phrase categories to which they
apply in a certain language. For this purpose the NPL task Features.AddPotentialFeatures has been
defined (figure 24).

CLIENT TASK AddPotentialFeatures @Model %cat `featu res;
 DEFINE %feature;
 DEFINE `values;
 DEFINE %value;
BEGIN
 FOREACH NODECLASS %feature IN `features DO
 `values := NIL ;
 // Get the potential value of the feature
 FROM @Model TO `values
 SELECT NODES Constituent.%feature.general.?va lue;
 FOREACH NODECLASS %value IN `values DO
 UPDATE @Model
 ADD LINK %cat.%feature.potential.%value;
 ENDFOR;
 ENDFOR;
END AddPotentialFeatures;

 5

figure 24 Definition of the task Features.AddPotentialFeatures

This task associates a number of features with the input category (%cat). For each feature it first looks up
the potential value as represented in the generic model, and subsequently creates a link between the input
category and potential value. For example, in order to specify that nouns can have the feature number
the task should be called with parameters: %cat = noun and `features = number. As a result the link:
noun.number.potential.NumberValue would be added to the model.
The qualifier segment is used to represent segments in a way that is more complex than one would
expect. If a segment would be represented by a link of the form root.function.segment.foot we would be
unable to represent its shared features and it destination, as ROIS currently does not support links
between links. On the other hand, links of the form root.function.segment.foot are useful for a number of
reasons. As they are inherited by all the descendants of the root and the foot retrieval of the segments of a
language via the root or the foot becomes an easy task. In addition links of this form are needed anyway
as they have to sanction the creation of links that represent the branches of syntactic trees.
In order to work around this problem the current implementation applies a ‘dual’ representation of
segments. This is illustrated in the definition of the task Segments.AddSegment (figure 25).

CLIENT TASK AddSegment @Model %root %function %foot `sharedFeatures;
 DEFINE %segment;
 DEFINE $name;
 DEFINE %sharedFeature;
BEGIN
 // Add segment involves four actions:
 // 1 make link class below %function. The name
 // of this link class is %root-%function-%foot e.g., ‘NP-head-Noun’
 // 2 add sanction: %root.%segment.segment.%foot
 // 3
 // 4 add shared features to segment
 MakeSegmentName %root %function %foot $name;
 UPDATE @Model
 // Add the segment as a LinkClass
 ADD LINKCLASS $name %segment
 PARENTS %function Segment

 CARDINALITY MANY ONE
 ADD LINK %segment.hasRoot.internal.%root;
 ADD LINK %segment.hasFoot.internal.%foot;
 // Add a link to sanction %root.%segment.const ituent.%foot;
 // needed to build constituent trees
 ADD LINK %root.%segment.segment.%foot
 // Add shared features
 ;
 FOREACH NODECLASS %sharedFeature IN `sharedFeatur es DO
 UPDATE @Model
 ADD LINK %segment.hasSharedFeature.segmentPro perty.%sharedFeature;
 ENDFOR;
END AddSegment;

figure 25: Definition of the task Segments.AddSegment

First, this task creates the segment as a link class with the name “<root>-<function>-<foot>” as a
subclass to <function>. Second, it creates the link <root>.<segment>.segment.<foot>. This link
sanctions the creation of links of class <segment> with qualifier constituent between descendants of
<root> and descendants of <foot>. Third, two links with qualifier internal are created to make retrieval
of the segment’s root and foot more efficient. And finally, the segment’s position and shared features are
represented by creating links between the segment and the features, using the link classes
hasPrimaryDestination and hasSharedFeature and qualifier segmentProperty. These link classes and
this qualifier are actually represented in the generic language model, but they exist for implementation
reasons only.

 6

CLIENT TASK AddSegment @Model %root %function %foot `sharedFeatures;
 DEFINE %segment;
 DEFINE $name;
 DEFINE %sharedFeature;
BEGIN
 // Add segment involves four actions:
 // 1 make link class below %function. The name
 // of this link class is %root-%function-%foot e.g., ‘NP-head-Noun’
 // 2 add sanction: %root.%segment.segment.%foot
 // 3
 // 4 add shared features to segment
 MakeSegmentName %root %function %foot $name;
 UPDATE @Model
 // Add the segment as a LinkClass
 ADD LINKCLASS $name %segment
 PARENTS %function Segment

 CARDINALITY MANY ONE
 ADD LINK %segment.hasRoot.internal.%root;
 ADD LINK %segment.hasFoot.internal.%foot;
 // Add a link to sanction %root.%segment.const ituent.%foot;
 // needed to build constituent trees
 ADD LINK %root.%segment.segment.%foot
 // Add shared features
 ;
 FOREACH NODECLASS %sharedFeature IN `sharedFeatur es DO
 UPDATE @Model
 ADD LINK %segment.hasSharedFeature.segmentPro perty.%sharedFeature;
 ENDFOR;
END AddSegment;

figure 26 Definition of the task Segments.AddSegment

3.3 Representation of lexicons
The structure of the lexicons used by the natural language generation module is identical for all
languages. However, the grammar specifies which features can apply to the lemmas of particular
categories. Lemmas are represented as subclasses to the particular lemma category they belong to. Their
(internal) name is constructed by concatenating the spelling of their basic form and their category.
Adding a lemma also involves adding its basic form. This is illustrated by the definition of the task
Lexicon.AddLemma (figure 27).

CLIENT TASK AddLemma @Model $basicSpelling %categor y :%NewLemma ;
 DEFINE $lemmaName;
 DEFINE $subCategory;
 DEFINE %subCategory;
 DEFINE %wordForm;
BEGIN
GetLemmaName $basicSpelling %category $lemmaName;
 IF EXISTS NODE $lemmaName %NewLemma IN @Model THE N
 RETURN -500;
 ELSE
 MakeSubCategoryName 'basic' %category $subCateg ory;
 IF EXISTS NODE $subCategory %subCategory IN @Mo del THEN
 #fastlink on;
 UPDATE @Model
 ADD NODECLASS $lemmaName %NewLemma PARENTS %category;
 AddWordForm @Model %NewLemma %subCategory $ basicSpelling %wordForm;
 #fastlink off;
 ENDIF;
 ENDIF;
END AddLemma;

figure 27 Definition of the task Lexicon.AddLemma

Lexeme categories represent the forms individual lemmas of a particular category can take. For every
lemma category there exists at least one lexeme category that represents the basic form of that lemma
category with the appropriate feature value pairs, e.g., basic:Noun with number=singular. Additional
Lexeme categories can be defined using the task AddSubCategoryFeatures that is presented in figure 28
below.

 7

CLIENT TASK AddSubCategoryFeatures @Model $subCateg ory %category `features;
 // adds lexeme category and features
 DEFINE %subCategory;
 DEFINE $subCategoryName;
 DEFINE %feature;
 DEFINE %node;
BEGIN
 MakeSubCategoryName $subCategory %category $subCa tegoryName;
 IF NOT EXISTS NODE $subCategoryName %subCategory IN @Model THEN
 UPDATE @Model
 ADD NODECLASS $subCategoryName %subCategory P ARENTS %category SubCategory;
 ENDIF;
 FOREACH NODECLASS %node IN `features DO
 IF %feature EQUALS NIL THEN
 %feature := %node;
 ELSE
 Features.AddFeatureValue @Model %subCategory %feature %node;
 %feature := NIL;
 ENDIF;
 ENDFOR;
END AddSubCategoryFeatures;

figure 28: Definition of AddSubCategoryFeatures

A lexeme is represented by creating an anonymous subclass of its associated lemma and its lexeme
category. Its spelling is implemented by creating a hasSpelling link to a ROIS TEXT node that
represents its spelling. The representation of lemma categories, lemmas, lexeme categories, lexemes, and
spellings is illustrated in
figure 29 below. Note that the feature value pair gender=neuter will be inherited by all the lexemes of
the noun oor.

LemmaCategory

oor_Noun

Noun

“oor”

singular

hasSpelling

basic:Noun number

LexemeCategory

gender

neuter

plural:Nounnumber

WordCategory

hasSpelling“oren”

plural

figure 29. Examples to illustrate general scheme of representation of lemmas and lexemes

The present approach allows the representation of lexemes that have the same spelling but that belong to
different lemmas. For example, the Dutch string zijn could be the spelling of both a plural form of the
Dutch verb zijn (to be) and a singular form of the possessive pronoun zijn (his). Note that this scheme
also supports word forms of a single lemma that have identical spellings but different features, e.g., the
masculine nominative singular and feminine genitive singular form of the German definite article (der).
Finally, the present approach could easily be extended to represent alternative spellings and the
pronunciation of lexemes.
In order to assign feature values pairs to phrase categories, lemmas, and lexeme categories, the generic
model incorporates a qualifier called actual and a task called Features.AddFeatureValue.

UPDATE @Model
 ADD QUALIFIER 'actual'
 SANCTIONED BY potential
 PROPERTIES irreflexive
 INHERITANCE default

figure 30. Definition of the qualifier actual.

 8

The qualifier is sanctioned by the qualifier potential (its definition is shown in figure 30) and assigning a
feature value to a lemma or a lexeme category is implemented by creating a link of the form <phrase |
lemma | lexeme category>.<feature>.actual.<feature value>.

3.4 Representation of Syntactic trees
We described syntactic tree formation as the central syntactic mechanism to be used in natural language
generation and natural language analysis. In order to represent syntactic trees, the generic language
model incorporates a qualifier called constituent which is sanctioned by the qualifier segment. Its
definition is shown in figure 31.

UPDATE @Model

 ADD QUALIFIER 'constituent'
 SANCTIONED BY segment
 PROPERTIES irreflexive
 INHERITANCE no

figure 31 Definition of the qualifier constituent.

Consider the simple constituent tree representing the NP an infection which is presented in figure 32.
The tree involves two segments: NounPhrase-head-Noun, and NounPhrase-determiner-Article.

Noun Phrase

Noun:
infection

head

Article:
an

determiner

figure 32. Simple constituenty tree representing the NP an infection

This tree can be represented in the following way. Given an instance of the category NounPhrase, e.g.,
[NounPhrase: #765] and instances of the lemmas infection_Noun and a_Article, e.g., [infection_Noun:
#9876] and [a_Article: #6543] we can create the following links using the link classes NounPhrase-
head-Noun and NounPhrase-determiner-Article:

[NounPhrase: #765].NounPhrase-head-Noun.constituent.[infection_Noun: #9876]
[NounPhrase: #765].NounPhrase-determiner-Article.constituent.[a_Article: #6543]

Note that as soon as some linguistic expression has been produced for a certain Grail concept, the lemma
and phrase instances that were used to build the syntactic tree are no longer needed and can be disposed
of. For this purpose the task Constituents.RemoveConstituent is available.

3.5 Representation of syntactic frames

Syntactic frames are the building blocks of the natural language generation process. Examples are
presented in figure 33. Syntactic frames reside in the language model. They are represented in ROIS by
instances of the node class Frame. These frame instances can have up to four links with qualifier internal
and respectively the link classes: attributeSegment, attributeLemma, valueSegment, and valueLemma
which associate the frame instance with these segments and lemmas. For example, the simple frames in
figure 33(a) and figure 33(b) only have a link to the attributeSegments (NounPhrase-modifier-
AdjectivalPhrase and NounPhrase-modifier-NounPhrase). The frame in figure 33(c) has two links: one
to the attributeSegment (NounPhrase-modifier-PrepositionalNounPhrase), and one to the
attributeLemma (of_Preposition). The frame in figure 33(d) has four links: one to the attributeSegment
(NounPhrase-modifier-PastParticipleS), one to the attributeLemma (mix_MainVerb), one to the
valueSegment (PastParticipleS-modifier-PrepositionalNounPhrase), and one to the valueLemma
(in_Preposition).
A frame’s attributeSegment and valueSegment relate to its topic constituent and value constituent in the
following way: The topic constituent of a frame always corresponds with the foot of the attributeSegment.

 9

The value constituent of a frame corresponds either with the foot of its valueSegment (if it has one), or
with the foot of the attributeSegment.

modifier

Noun Phrase

NounPhrase

modifier

PrepositionalNounPhraseAdjectival Phrase

Preposition: of

functor

NounPhraseNounPhrase

modifier

PastParticipleS

MainVerb: mix

head

NounPhrase

modifier

PrepositionalNounPhrase

modifier

Preposition: in

functor

(a) (b) (c) (d)

figure 33. Example frames for English. Topic constituents are in italics, value constituents in bold type
face

3.6 Overview of the implementation of the generic linguistic framework
A schematic overview of the ROIS implementation of the linguistic framework is presented in figure 34.
It presents the top levels of the link and node class hierarchy. Link classes are represented in boxes

SyntacticObject

PhraseCategory

singular

gender

“oor”

Constituent FeatureValue

Noun

neuter

GenderValue

NumberValue

LemmaCategory

feature

oor_Noun gender

number

female

number

hasSpelling

NounPhrase

plural

function

head

NP-head-Noun

SyntacticRelation

topLinkClass TopNodeClass

isSubclassOf

general

segment

potential

actual

constituent[oor_Noun: #8398]

NP-head-Noun

[NounPhrase: #529]

[de_Article: #8398]

NP-determinerArticle

singularnumber

basic:Noun

figure 34 Schematic overview of implementation of generic linguistic framework in ROIS

 10

with rounded corners. The horizontal arrows with qualifier general represent the generic (language
independent) sanctioning links. The horizontal links with the qualifiers segment and potential are
examples of links that are part of the specification of a Dutch language model. Note that the figure is
incomplete in the sense that some potential links are not presented for presentational reasons only (for
example the link between NounPhrase and NumberValue). The links qualified as actual are a part of a
Dutch lexicon. The links qualified as constituent represent the branches of an example constituent tree
that would be built during the natural language generation process. Note also, that the branches are
represented by links between an instance of the node class NounPhrase and instance of the lemmas
oor_Noun and de_Article.

4 Representation of relations in Grail
In the ROIS implementation of Grail, criteria and statements are represented by links. In order to be able
to annotate relations, such as the relation (Fracture, hasLocation, Bone) we create a link from a link that
represents this relation to the node representing the syntactic frame in the language model. This is
implemented as follows: first, in the Grail model a link Fracture.hasLocation._statement_.Bone is
created using the qualifier _statement_. Then a hook to that link is created using the ROIS cloaking
mechanism. In fact, the resulting cloak is a ROIS node that will serve as a hook to the relation (Fracture,
hasLocation, Bone). This is illustrated by the task addStatement from the module System (figure 35).

CLIENT TASK addStatement @model %tail %attr %qual % head :%cloak;
BEGIN
 #checking off; // allows redundant sanctions!
 IF NOT EXISTS LINK %tail.%attr.%qual.%head IN @mo del THEN
 UPDATE @model
 ADD LINK %tail.%attr.%qual.%head;
 ADD CLOAK %tail.%attr.%qual.%head %cloak;
 ELSIF NOT EXISTS CLOAK %tail.%attr.%qual.%head %c loak IN @model THEN
 UPDATE @model
 ADD CLOAK %tail.%attr.%qual.%head %cloak;
 ENDIF;
 #checking on;
END addStatement;

figure 35. Definition of task System.addStatement.

5 Linguistic annotation of Grail models
ROIS provides support to create links between nodes that reside in different models. This feature is used
to represent linguistic annoatations of Grail models (semantic mappings from concepts of a particular
Grail model to syntactic objects (lemmas and syntactic frames) of a Language model. The links that
represent the semantic mappings are stored in a semantic model. A semantic model can incorporate links
from a Grail model to several Language models. The semantic models uses the link class hasExpression
and the qualifier semantic to represent the linguistic annotations. The NPL task Semantics.createModel
creates a model that includes this link class and the qualifier semantic.
Before we can create a link between a concept or a relation from a Grail model and a syntactic object
from a language model both the Grail model and the language model should be added to the semantic
model using the NPL tasks Semantics.AddGrailModel and Semantics.AddLanguageModel respectively.
The tasks Semantics.EnumLanguageModels can be used to find out which languages are associated with
a particular semantic model.
Once we have a semantic model that relates a Grail model to a Language model the concept annotations
can be added to a semantic model by calling the task Semantics.AddSemanticMapping with the concept
and the lemma as arguments. This task simply adds the link if it does not yet exist (figure 36).

CLIENT TASK AddSemanticMapping @sem %concept %synta cticObject;
BEGIN
 IF NOT EXISTS LINK %concept.hasExpression.semant ic.%syntacticObject IN @sem THEN
 UPDATE @sem
 ADD LINK %concept.hasExpression.semantic.%syn tacticObject;
 ENDIF;
END AddSemanticMapping;

figure 36. Definition of the NPL task Semantics.AddSemanticMapping

 11

Relation annotations are represented To annotate the relation (Fracture, hasLocation, Bone) first the task
System.addStatement is called with the qualifier _statement_ from the Grail model. The hook (or cloak
in ROIS terms) that is returned by this task can then be used as the %concept argument to the task
Semantics.AddSemanticMapping shown in figure 36 above.
The argument %syntacticObject is a syntactic frame from the language model.
Concept annotations can be retrieved from the semantic model using one of the NPL tasks defined for
that purpose, such as Semantics.GetAllLemmasForEntity. Given a particular Grail concept this task
retrieves the lemmas that are capable of expressing the concept in the language represented by the input
parameter @languageModel. The definition of this task is presented in figure 37.

TASK GetAllLemmasForEntity @semanticModel @language Model %concept: `Lemmas;
 DEFINE %lemma;
 DEFINE `lemmas;
BEGIN
 FROM @semanticModel TO `Lemmas
 SELECT NODES %concept.hasExpression.semantic.?l emma
 WHERE ?lemma IN @languageModel;
END GetLemmasForEntity;

figure 37 Definition of the NPL task Semantics.GetAllLemmasForEntity

In addition to the tasks mentioned above the Semantics module contains several other tasks that add and
remove mappings between Grail and Language models.

6 Filtering: criterion suppression and wrappers
Although it is not actually a part of the natural language generation modules, this section will describe
the filtering mechanism incorporated within the ROIS Grail module. Both wrappers and criterion
suppression are represented using the task addStatement presented in figure 35. To represent a wrapper
this task is called with the qualifier _wrapper_, and to represent criterion suppression it is called with the
qualifier _suppress_ (see figure 38). Note that wrappers can be assigned a rank which indicates the order
in which they apply.

CLIENT TASK addSuppress @grailModel %tail %attr %he ad;
 DEFINE %cloak;
BEGIN
 System.addStatement @model %tail %attr _suppress_ @grailModel %head %cloak;
END addSuppress;

CLIENT TASK addWrapper @grailModel %tail %attr %hea d %rank;
 DEFINE %cloak;
BEGIN
 System.addStatement @model %tail %attr _wrapper_@ grailModel %head %cloak;
 IF NOT %cloak EQUALS NIL THEN
 IF NOT EXISTS LINK %cloak.hasWrapperRank.system Definition.%rank IN @model THEN
 UPDATE @model ADD LINK %cloak.hasWrapperRank. systemDefinition.%rank;
 ENDIF;
 ENDIF;
END addWrapper;

figure 38 Representation of criterion suppression and wrappers

The generation algorithm calls the task Grail.definingFiltered which returns the defining criteria of a
concept but which unwraps any wrappers, and which removes any criteria that are suppressed. For
further detail see the sources of the Grail module (Grail.ide and Filter.ide).

7 Implementation of the generation algorithm
The implementation of the generation algorithm closely follows the description of the algorithm as
presented in the part 1 of the documentation, called: Generating Multilingual Natural Language
Expressions for Grail Concepts. The corresponding NPL code contains many comments and is largely
self- explanatory. The main tasks that implement the natural language generation process are defined in
the modules Generate, Syntax, and Semantics. Below these will be presented in turn.

 12

7.1 Generate
CLIENT TASK GeneratePhrase @sem @gra @lan %concept $addArticles $phraseCategory
 :$SurfaceString :%MainCo nstituent :`NoLemmaForConcept
 :`NoSegmentForCriterion :`NoRightWordForm;
TASK GenerateConstituent @sem @lan @gra %concept %t argetClass :`Constituents
 :`NoLemmaForConcep t :`NoSegmentForCriterion;
HIDDEN TASK ExpressCriteria @sem @lan @gra %topic % topicConstituent
 `criteria :`NoLemmaForC oncept :`NoSegmentForCriterion;

7.2 Syntax
TASK FunctorizeAll @lan %const %addArticles;
TASK Serialize @lan %const :`LemmaSequence;
TASK MakeSurfaceString @lan `lemmaSequence :$Phrase :`NotRightWordForm;

7.3 Semantics
TASK GetFramesForCriterion @sem @lan @gra %concept %att %val %rootCategory :`Frames;
TASK GetLemmasForEntity @sem @lan %entity `categori es :`Lemmas;

8 API of Natural Language Generation modules
This section lists the signatures of the tasks defined for use by clients, ordered by module.

8.1 Features
AddFeatureValue @Model %cat %feature %value
DeleteFeatureValue @Model %cat %feature %value
GetPotentialFeatureValues @Model %feature :`Values
GetLocalValues @Model %cat :`local
GetLocalFeatureValue @Model %cat %feature :%value
AddPotentialFeatures @Model %cat `features
GetActualFeaturesAndValues @Model %cat :`FeaturesAn dValues
GetPotentialFeatures @Model %cat :`features
GetFeatureValue @Model %cat %feature :%value
ChangeFeatureValue @model %cat %feature %value

8.2 Lexicon
AddCategory @Model $name %firstParent `otherParents
ChangeSpellingOfWordForm @lan %wordForm $newSpellin g
GetPotentialCategories @lan %spelling :`Categories
AddLemma @Model $basicSpelling %category :%NewLemma
GetLemmaForms @lan %lemma :`WordForms
GetFirstLemma @lan %category :%Lemma
SearchMatchingSpellings @Model $spelling :`Texts
EnumLemmaCategories @lan :`Cats
GetLemmasForEntry @lan %spelling %category :`Lemmas
AddFormFeatureValue @Model %cat %feature %value
GetNextLemma @lan %category %previousLemma :%Lemma
GetSpelling @lan %wordForm :$SpellingString
EnumSubCategories @Model %category :`SubCategories
GetLemmaForm @Model %lemma %subCategory :%Form
AddSubCategoryFeatures @Model $subCategory %categor y `features
GetLemma @lan $basicSpelling %category :%Lemma
AddWordForm @Model %lemma %subCategory $wordFormSpe lling :%WordForm
GetFormAndSpelling @model %lemma %subCategory :%for m :%spelling
HasOnlyOneSubCategory @lan %lemma :%Bool

8.3 Segments
AddSegment @Model %root %function %foot `sharedFeat ures
GetRootAndFoot @lan %segment :%Root :%Foot
GetFoot @lan %segment :%Foot
GetSegment @lan %root %function %foot :`Segment
AddDestination @lan %root %function %foot %destinat ion %position
AddSubSegment @lan %parent %root %function %foot `f eatures
GetRoot @lan %segment :%Root

8.4 Constituents
RemoveConstituent @lan %const

 13

8.5 Syntax
createModel $file :@Model

8.6 Frames
GetElements @lan %frame :%attributeSegment :%attrib uteLemma :%valueSegment

 :%valueLemma
EnumLemmaCategories @lan %segment :`Categories
EnumAttributeSegments @lan :`Segments
FindFrame @lan %attributeSegment %attributeLemma %v alueSegment %valueLemma :%Frame
GetFrame @lan %attributeSegment %attributeLemma %va lueSegment %valueLemma :%Frame
EnumValueSegments @lan %segment :`Segments
MakeFrame @lan %attributeSegment %attributeLemma %v alueSegment %valueLemma :%Frame

8.7 GrailExtension

RemoveCriteria `criteria `minus :`Criteria

8.8 Semantics
RemoveSemanticMapping @sem %concept %syntacticObjec t
EnumGrailModels @model :`Models
AddGrailModel @sem $sub :@sub
AddLanguageModel @sem $sub :@sub
GetAllLemmasForEntity @sem @lan %concept :`Lemmas
EnumLanguageModels @model :`Languages
getLocalFrames @sem @language %cloak :`frames
GetEntitiesForLemma @sem @galen %lemma :`concepts
AddSemanticMapping @sem %concept %syntacticObject
makeCriterionMapping @sem @galen %topic %attr %valu e %segment %lemma
createModel $file :@sem
getFrames @semantics @galen @language %topic %attr %value :%statement :`frames
removeCriterionMapping @sem @galen %topic %attr %va lue %segment %lemma

8.9 Generate
GeneratePhrase @sem @gra @lan %concept $addArticles $phraseCategory :$SurfaceString
 :%MainConstituent :`NoLemmaForConcept :`NoSegme ntForCriterion :`NoRightWordForm

9 External/interchange formats for Language models and Semantic models
The source files for language models and semantic models are in Lexicon Interchange Format (.LIF) and
Mapping Interchange Format (.MIF) respectively. Below these formats are described in EBNF notation.

<LIF> ::= LANGUAGE <language> <lemmas>
<language> ::= <string>
<lemmas> ::= 1{<lemma>}
<lemma> ::= LEMMA <lemma_category> <spelling> [<features>] [<forms>]
<lemma_category> ::= <lemma_category_full> | <lemma_category_abbrev>
<lemma_category_full> ::= Noun | Adjective | Article | Preposition | Adverb | ProperName | PN |

CoordinatingConjunction | SubordinatingConjunction | MainVerb |
AuxiliaryVerb | CopulaVerb | CardinalNumber | PersonalPronoun |
PossessivePronoun | DemonstrativePronoun | InterrogativePronoun |
IndefinitePronoun | ReflexivePronoun | ReciprocalPronoun |
RelativePronoun |

<lemma_category_abbrev> ::= N | ADJ | ART | PREP | ADV | COOCON | SUBCON | MV | AV | CV
| CARD | PERSPRO | POSSPRO | DEMONPRO | INTERPRO |
INDEFPRO | REFLPRO | RECIPRO | RELPRO

<spelling> ::= “ <string>”
<features> ::= FEATURES 1{<feature>}
<feature> ::= <feature_name><feature_value>
<feature_name> ::= number | gender | definite | case | prenominal | inflection | affixRole |

countable | determinable | diminutive form | tense | aspect | participle |
syntacticallyTransitive | syntacticallyReflexive | reciprocal |
separableVerb | diminutiveForm

 14

<feature_value> ::= singular | plural | masculine | feminine | neuter | + (positive) | -
(negative) | nominative | genitive | dative | accusative | translative |
partitive | essive | inessive | adessive | illative | allative | elative |
ablative | instructive | abessive | prefix | infix | suffix | past | present |
future | perfect | imperfect | presentParticiple | pastParticiple

<forms> ::= FORMS 1{<form>}
<form> ::= <lexeme_category> <spelling>
<lexeme_category> ::= “<string>”
<string> ::= 1{a..z | A..Z | 0..9}

<MIF> ::= LANGUAGE <language> 0{<suppress>} 0{<wrapper>}

0{<concept_annotation >}0{<relation_ annotation >}
<suppress> ::= SUPPRESS <concept> <attribute> <concept>
<wrapper> ::= WRAPPER <concept> <attribute> <concept>
<concept> ::= <string>
<attribute> ::= <string>
<concept_annotation> ::= CONCEPT <concept> 1{<lemma_category> <spelling>}
<relation_annotation> ::= RELATION <concept> <attribute> <concept> 1{<frame>}
<frame> ::= FRAME <segment> [<lemma_category> <spelling>
 [WITH <segment> [<lemma_category> <spelling>]]]
<concept> ::= <string>
<segment> ::= <phrase_category>-<function>-<constituent_category>
<phrase_category> ::= NP | S | PP | ADJP | PNP | ADVP
<function> ::= head | modifier | functor | determiner | prefix | postfix | subject |

directObject | indirectObject | complement | auxiliary | particle |
predicate | conjunctionElement

<constituent_category> ::= <lemma_category_abbrev> | <phrase_category> |
<other_phrase_category>

<other_phrase_category> ::= <string>

 15

Generating Multilingual Natural Language

Expressions for Grail Concepts

Part III: Using Humpty and GCE

Wim Claassen
University of Nijmegen

NICI

 16

Contents

1 Introduction.. 1
2 Humpty.. 1

2.1 Grammar specification: Humpty Grammar files ... 1
2.2 Compiling a grammar file.. 2
2.3 Adding and modifying lemmas and word forms (lexemes) ... 3

3 Using the GCE to add and maintain Linguistic Annotations.. 3
3.1 Concept and relation annotation .. 4
3.2 Generating language.. 6
3.3 Importing and exporting annotations.. 6

4 Adding languages to the generator .. 7
4.1 The Finnish, English, and Dutch language models... 7
4.2 An extended example: adding German to the generator.. 7

4.2.1 Determine which concepts have to be described... 7
4.2.2 Create a Language model ... 7
4.2.3 Create linguistic annotations .. 12

Appendix A: Grammars in Humpty format (.GRM) ... 14
Finnish ... 14
English ... 18
Dutch.. 21

Appendix B: Format of interchange files (.MIF; .LIF) .. 25

 1

1 Introduction
The documentation on the ROIS based Natural Language Generator developed within the context of the
Galen In Use project consist of three papers: (1) a theoretical paper on the design of the generator, (2) a
description of its implementation, and (3) this paper which is a manual describing how the generator is
to be used.
Grail models can be created and maintained using the ROIS client GCE (Galen Case Environment).
Documentation of the GCE is available via the Web. The ROIS Natural Language Modules provide a
collection of tasks to create grammars and lexicons for the European target languages. These tasks are
called by an aplication called Humpty. In addition, ROIS Natural Language Modules provide tasks that
support the annotation of Grail models with linguistic knowledge in order to automatically produce
natural language expressions for Grail concepts. These are called by the GCE. The following sections
will go into Humpty and the GCE in turn.

2 Humpty
The ROIS client application Humpty can be used first, to create and compile natural language grammars,
and second, to populate and maintain lexicons that are compatible with such a grammar. Usually we
refer to a compiled grammar as a basic language model, whereas a basic language model that has been
populated with lexical material is referred to as a language model.

2.1 Grammar specification: Humpty Grammar files
The ROIS client application Humpty can be used to create basic language models. A basic language
model specifies the grammar of a particular language. That is, which features potentially apply to which
lemma and phrase categories, which lexeme categories are identified and what their features are,
additional phrase categories that are required, and the segments that can be used to built phrases.
The syntax of grammar files is presented below in EBNF notation.

<grammar> ::= LANGUAGE <language>
 0{<category_spec>}
 0{<segment_spec>}
 END <language>
<language> ::= <string>
<category_spec> ::= <lemma_spec> | <phrase_spec | new_phrase_spec>
<lemma_spec> ::= CATEGORY <lemma_category>
 <feature_specs>
 0{<form_spec>}
 END
<phrase_spec> ::= CATEGORY <phrase_category>
 <feature_specs>
 END
<new_phrase_spec> ::= CATEGORY <string>
 BASE <phrase_category> | <string>
 < feature_specs >
 END
<lemma_category> ::= <lemma_category_full> | <lemma_category_abbrev>
<lemma_category_full> ::= Noun | Adjective | Article | Preposition | Adverb | ProperName | PN |

CoordinatingConjunction | SubordinatingConjunction | MainVerb |
AuxiliaryVerb | CopulaVerb | CardinalNumber | PersonalPronoun |
PossessivePronoun | DemonstrativePronoun | InterrogativePronoun |
IndefinitePronoun | ReflexivePronoun | ReciprocalPronoun | RelativePronoun
|

<lemma_category_abbrev> ::= N | ADJ | ART | PREP | ADV | COOCON | SUBCON | MV | AV | CV |
CARD | PERSPRO | POSSPRO | DEMONPRO | INTERPRO | INDEFPRO |
REFLPRO | RECIPRO | RELPRO

<feature_specs> ::= FEATURE 1{<feature_spec>}
<feature_spec> ::= <feature_name> | <feature_value_spec>
<feature_name> ::= number | gender | definite | case | prenominal | inflection | affixRole |

countable | determinable | diminutive form | tense | aspect | participle |

 2

syntacticallyTransitive | syntacticallyReflexive | reciprocal | separableVerb |
diminutiveForm

<feature_value_spec> ::= <feature_name> = <feature_value>
<feature_value> ::= singular | plural | masculine | feminine | neuter | + | positive | - | negative |

nominative | genitive | dative | accusative | translative | partitive | essive |
inessive | adessive | illative | allative | elative | ablative | instructive | abessive
| prefix | infix | suffix | past | present | future | perfect | imperfect |
presentParticiple | pastParticiple

<form_spec> ::= FORM <lexeme_category>[<feature_value_specs>] END
<feature_value_specs> ::= FEATURES 1{<feature_value_spec>
<lexeme_category> ::= “<string>”
<segment_spec> ::= SEGMENT phrase_category> <function> <constituent_category>
 DESTINATION PRIMARY=<position>
 <shared_features>
 END
<phrase_category> ::= NP | S | PP | ADJP | PNP | ADVP
<function> ::= head | modifier | functor | determiner | prefix | postfix | subject | directObject |

indirectObject | complement | auxiliary | particle | predicate |
conjunctionElement

<constituent_category> ::= <lemma_category_abbrev> | <phrase_category> | <other_phrase_category>
<other_phrase_category> ::= <string>
<shared_features> ::= 0{FEATURES 1{<feature_name>}}
<string> ::= 1{a..z | A..Z | 0..9}
<position> ::= 1 .. 9

Example grammars in this form are presented in Appendix A.

2.2 Compiling a grammar file
When you start Humpty (e.g., by clicking the icon from the ClaW console) the Humpty console will
open. If you want to create a new language model then choose Model-New from the menu bar. A
grammar editor window will open. Here you can create and modify grammars according to the format
described above (figure 39). Note that Humpty assumes that grammar files are stored in a subdirectory of
your ROIS directory called Grammars, e.g., in C:\ROIS\GRAMMARS.

figure 39: Editing grammar files using Humpty

 3

You can choose Compile from the menu bar to compile the grammar into a new basic language model.
Once you have succesfully compiled the grammar ,Humpty will open the new Language model for you.
Then you can can close the grammar editor and start adding lemmas and lexemes to the language model.

2.3 Adding and modifying lemmas and word forms (lexemes)
In order to add or modify lemmas and word forms (lexemes) the language model must be open. You can
open an existing language model by choosing Model-Open from the menu bar. Humpty displays the
name of the open language model in its title bar. Adding lemmas and lexemes to a language model can
be done in two ways, either interactively, or by importing an ascii file in .LIF format. To add lemmas
interactively choose Lemma-Add from the menu bar. Then a window titled Lemma .. will open. In this
Lemma window select the lemma category of your choice and enter the basic form of the lemma. After
you press the Ok button the Lemma window will display a list of features and a list of word forms
(lexeme categories) as specified by the grammar (figure 40).

figure 40: Interactively adding or modifying lemmas and word forms

If you right click a feature value in the list, alternative values will be presented to you in a pick list.
Selecting one of them will reset the feature to the new value.
You can add or edit the spelling of the individual word forms of the lemma by selecting the name of the
word form (the lexeme category) and subsequently adding or modifying the contents of the text box at the
bottom of the lemma window and pressing the Change button.
You can add lemmas and lexemes to a language model by importing an ascii file in Lexicon Interchange
Format (.LIF; see appendix B). Then you should choose Model-Import from Humpty’s menu bar.
Conversely, you can export the lexical information from any language model to a .LIF file by choosing
Model-Export. Note that in order to import a LIF file succesfully it must be compatible with the grammar
of the language model into which it is imported. This means that the features must be applicable, and the
names of the lexeme categories used must be identical. Humpty assumes that .LIF files are stored in a
subdirectory of your ROIS system directory called Sources (e.g., in C:\ROIS\SOURCES)

3 Using the GCE to add and maintain Linguistic Annotations
You can use the GCE to add multilingual natural language generation facilities to a Grail model. To do
so you must have access to a basic language model for each of the languages you want to add. To add a
particular language from scratch you should create an empty MIF file for your language. This is an ascii

 4

file named <language>.MIF, (e.g., German.MIF) which resides in your ROIS\SOURCES directory. The
first line of this file should be: LANGUAGE <language> (e.g., LANGUAGE German). Now first open
the Grail model and a CRM Browser will display the top of the concept hierachy. Choose Language-
Import from the CRM Browser’s menu bar, and select the mif file from the file dialogue box that opens.
Usually you will start the linguistic annotation process by tagging the wrappers and criteria to be
suppressed in the Grail model. Subsequently you will add the concept and relation annotations for your
language.

3.1 Concept and relation annotation
In order to add or modify annotations you should open the GCE’s Criteria Window by choosing
Windows-Criteria from the GCE’s menu bar. Then you focus the CRM browser on the concept you are
interested in. The criteria window will display the concept in canonical form (figure 41). Make sure that
the option Display-Pretty of the criteria window is checked, and that the option Display-Filter of the
criteria window is unchecked.

figure 41: GCE console with CRM browser and criteria window

If you right-click on a line of the criteria window a menu pops up. You can choose Annotate Concept to
annotate the value of the criterion that is displayed on the line clicked ,and Annotate Statement to create
or modify an annotation for the relation that is presented on that line.
If you choose Annotate Concept a Concept Annotation window will be displayed (figure 42). It allows
you to inspect, create, and modify annotations of the concept with existing or new lemmas in multiple
languages using the buttons Add, Change, and Delete. You can display the lexical information on a
particular lemma by selecting it from the list and pressing the button Humpty. You can also inspect
other concepts that have been annotated with the selected lemma by selecting the concept from the
bottom list and pressing the button Browse. This will open a CRM Browser focussed on that concept.

 5

figure 42: The concept annotation window.

If you choose Annotate Statement after right clicking on one of the lines in the criteria window the
Relation Annotation window will be displayed (see figure 43).

figure 43: Suppression and wrapper tagging using the relation annotation window.

At the top of this window the relation is presented that applies to the criterion you just right-clicked. In
this example this was the criterion isMainlyCharacterisedBy performance. The relation presented will
usually be more general than the criterion selected, that is, at a higher level in the concept hierarchy.
This is so if the topic concept of the relation (SurgicalDeed in the example) is an ancestor of the concept
focussed, if the attribute presented is an ancestor of the criterion clicked, or the value concept
(performance in the example) is an ancestor of the value of the criterion clicked. If you want to add an

 6

annotation at a lower level in the hierachy, you first mark the check box Local in order to see only
relations that are local, i.e. that exist between the topic concept and the criterion value. Now you can use
the drop-down lists to select more specific concepts and/or a more specific attribute.
You can suppress linguistic realisation of the current relation by clicking the radio button
Suppress.Alternatively you can tag the relation as a wrapper by setting the rank of the wrapper using the
drop-down list and pressing the button marked Wrapper. Please note that wrapper and suppression
tagging have effects for all the languages.

figure 44: Annotating a relation with a syntactic frame using the relation annotation window

To annotate the relation with a syntactic frame in a particular language, first select the language from the
drop-down list (see figure 44). Then successively select the attribute (main) segment and lemma, and the
value (extra) segment and lemma from the drop down lists to specify the frame that will be used to
express the relation in the language selected. Note that during this process the contents of the drop-down
lists may change dynamically in concordance with the segments of the grammar. Finally use the buttons
at the bottom of the relation annotation window to Add, Change, or Delete the relation annotation.

3.2 Generating language
To see the effects of your annotations you can open the Language window by choosing Window-
Language from the menu bar of the GCE console. This window will display a linguistic expression for
the focussed concept of the active CRM browser. Alternatively, you can make the CRM browser display
natural language instead of the concept names. To do so, choose the language of your choice from the
Display-Language menu of a CRM browser. Note that this may take some time, depending on the
number and complexity of the concepts to be displayed.

3.3 Importing and exporting annotations
Although interactively adding and modifying concept and relation annotations is useful in many
contexts, it is not a very convenient way to do bulk annotations. For this purpose the concept and relation
annotations can be represented in an ascii file in Mapping Interchange Format (.MIF). The format of this
file is described in appendix B. To export or import your annotations respectively choose Language-
Export or Language-Import from the menu bar of a CRM browser. Note that the system assumes that you
store your .MIF files in the ROIS subdirectory called SOURCES.
When concept annotations contain references to lemmas that do not yet exist in the language model they
will be added automatically during the language import process. It is also no problem to import a .MIF

 7

file more than once into the same file. Mappings that are already there will be ignored by the import
process.

4 Adding languages to the generator
In this section we will describe the steps you should take when your application needs natural language
phrases to describe concepts from a Grail model. First we will say some more about the Dutch, English
and Finnish grammars, lexicons, and annotations. The process of adding a language will be illustrated by
an example that adds a fragment of the German language to a simple Grail model on disorders that
involve the ear.

4.1 The Finnish, English, and Dutch language models
You will find the Finnish, English, and Dutch grammars in Appendix A. The Dutch and English
grammars are very straightforward. Here you can see how we use Segment Grammar to create compound
nouns. Using the feature affixRole we create the subcategories PrefixNP, PrefixADJP, SuffixNP, and
SuffixADJP with the corresponding values of affixRole, and the segments where these phrase categories
function as modifier, e.g., NP-modifier-PrefixNP. As a consequence of using the prefix/suffix feature
values is that in the surface string no space is inserted before/after the head of the phrase.
You will find the corresponding Grail model, and the language models for Finnish, English, and Dutch
in the software distribution. In addition you will find the corresponding LIF and MIF files to populate the
language models and semantic models respectively in the subdirectory sources.

4.2 An extended example: adding German to the generator
Below you will find a step by step description of how to add a new language to the generator. Note that it
is very useful to have a look at the example grammars, lexicons and mappings of English and Dutch
before you actually start to work on your own language. It may also be very helpful to use Humpty and
the GCE to look at how the other languages have been implemented.

4.2.1 Determine which concepts have to be described
Analyse the way your application uses the Grail model and create a small collection of concepts that need
description in the language to be added. Especially look for concepts that are composed ‘on the fly’, as
these will actually require the generator to produce ‘new’ phrases.
The example test set could consist of e.g.,

(Inflammation which < hasLocation
(Mastoid which < hasLaterality left >) hasChronicit y acute >)

4.2.2 Create a Language model
Creating a language model involves the following steps:
1. Define the language fragment
2. Analyse the fragment
3. Create the grammar
4. Create and populate the language model
The following sections will go into each of these steps in turn

4.2.2.1 Define the language fragment

Produce a collection of example phrases

Produce a small collection of example phrases that would describe the Grail concepts in your test set in a
satisfactory way. A German example phrase that could describe the example concept could be: eine akute
Entzündung des linken Mastoids.

Word categories

Create a list of word categories that are used in the example sentences. This would produce:
Article(eine; des)
Noun (Entzündung; Mastoids)
Adjective (akute; linken)

 8

Phrase categories

Create a list of phrase categories that play a role in the example sentences. This would produce:
NounPhrase (eine akute Entzündung ; des linken mastoids)
AdjectivalPhrase (akute; linken)

4.2.2.2 Analyse the fragment

Analyse word forms

Make an inventory of the forms of the words that play a role in the example phrases. Produce a list of
alternative forms, e.g.,

Article: eine; ein einer; eines,.. der, die, das, des etc..
Adjective: akute, akut, akuter etc..
Noun: Mastoid, Mastoids, etc

Define features

This stage requires some experience, but most native speakers will be able to produce a collection of
grammatical, and ungrammatical combinations of words. From this activity one can infer rules like:
The form of an adjective depends on the gender and the case of the noun it modifies. The form of the
article depends on the gender and the case of the noun etc. Of course, a good grammar book for your
language can be very useful at this stage. These rules will help you to produce a list that associates
features with word categories. E.g.,

Article: case; gender; definite
Adjective: case; gender
Noun: case; gender

Define lexeme categories for each lemma category

If you think this lists of word forms and features are more or less complete define names for the lexeme
categories that are needed in your fragment. Usually it is quite easy to find out what the basic form of the
words of each lemma category looks like. For example, in most European languages the basic form of
Nouns is the singular nominative form. Note that basic forms are already built into the Generic
Linguistic framework, and in most languages some words (e.g., prepositions) only exist in one form wich
will automatically be the basic form.

Analyze constituent structure to define segments

Now you have to analyse the example phrase with respect to its constituent structure. You should use the
syntactic functions that are presented in Part I of the documentation. For the example phrase this would
produce:

 9

Noun Phrase

Noun:
Entzündung

Adjectival Phrase

Adjective:
akute

Article:
eine

Adjective:
 linken

Article:
des

Noun Phrase

Noun:
Mastoids

Adjectival Phrase

determiner

determiner

modifier head modifier

head modifier head

head

figure 45 Example of a constituent structure of eine akute Entzündung des linken Mastoids

From a small collection of structures like this you can infer which segments you will have to define. This
would produce:

NounPhrase, determiner, Article
NounPhrase, modifier, AdjectivalPhrase
NounPhrase, head, Noun
NounPhrase, modifier, NounPhrase
AdjectivalPhrase, head, Adjective

Define phrase categories

The noun phrase des linken Mastoids modifies its parent phrase. It is said to be in the genitive. In order
for a noun phrase to modify some other noun phrase it must be in the genitive form. For this reason we
will later define a subcategory: GenitiveNounPhrase to the language model, which will have the feature
case: genitive. This will allow us to substitute the segment NounPhrase, modifier, NounPhrase with
NounPhrase, modifier, GenitiveNounPhrase.

Analyse how features influence the actual word form

Now we have to analyze which features of a word (lemma) should be in agreement with other
constituents of the phrase. Again, a grammar handbook of your language will proof very useful at this
stage. For example the features case and gender of an article should agree with the case and gender of the
head of the parent constituent (the noun). We can represent this dependency by defining the shared
features of the segments involved.

NounPhrase, determiner, Article: gender; case
NounPhrase, head, Noun: gender; case
NounPhrase, modifier, AdjectivalPhrase: gender; case
NounPhrase, modifier, GenitiveNounPhrase: <none>
AdjectivalPhrase, head, Adjective: gender; case

Analyze word order in the example sentences to define segment positions

The last step in the specification of the grammar is to assign positions to segments. A position is a
cardinal number which indicates the ordinal position of the foot of the segment relative to the other
children of the root of that segment within the constituent structure of the phrase. When assigning
positions to segments you should take into account that not all positions have to be taken by a constituent
at all times. The following positions will do fine for the example fragment.

NounPhrase, determiner, Article: second
NounPhrase, modifier, AdjectivalPhrase: fourth

 10

NounPhrase, head, Noun: sixth
NounPhrase, modifier, GenitiveNounPhrase: seventh

AdjectivalPhrase, head, Adjective: second

Note that the first, third, fifth and eighth position for the children of a noun phrase are still unoccupied.
In the extended German example grammar provided in Appendix A. You will see that they are used for
other segments that have noun phrase as a root.

4.2.2.3 Create the basic language model (grammar)

Produce the grammar file in GRM format (see section 2.1).

// Filetype: Grammar file (GRM)
// Author: Wim Claassen
// File: german.txt
// Comments: german test grammar;

LANGUAGE German

// WORDCATEGORIES
CATEGORY Noun
 FEATURES case=nominative number=singular gender
 // (eine akute Entzündung des linken MASTOIDS)
 FORM
 "singular genitive"
 FEATURES number=singular case=genitive
 END
END

CATEGORY Article
 // only singular nominative and genitive forms, a dd others as required
 // definite nominative
 // der is basic form
 FEATURES definite=+ number=singular gender=mascul ine case=nominative
 // die
 FORM
 "definite singular feminine nominative"
 FEATURES definite=+ number=singular gender=feminin e case=nominative
 END
 // das
 FORM
 "definite singular neuter nominative"
 FEATURES definite=+ number=singular gender=neuter case=nominative
 END
 // definite genitive
 // des
 FORM
 "definite singular masculine genitive"
 FEATURES definite=+ number=singular gender=masculi ne case=genitive
 END
 // des (eine acute Entzündung DES linken Mastoids)
 FORM
 "definite singular neuter genitive"
 FEATURES definite=+ number=singular gender=neuter case=genitive
 END
 // der
 FORM
 "definite singular neuter genitive"
 FEATURES definite=+ number=singular gender=feminin e case=genitive
 END
 // indefinite nominative
 // ein
 FORM
 "indefinite singular masculine nominative"
 FEATURES definite=+ number=singular gender=neuter case=nominative
 END
 // ein
 FORM
 "indefinite singular neuter nominative"
 FEATURES definite=+ number=singular gender=neuter case=nominative
 END
 // eine (EINE acute Entzündung des linken Mastoid s)
 FORM
 "indefinite singular feminine nominative"
 FEATURES definite=+ number=singular gender=neuter case=nominative

 11

 END
 // indefinite genitive:
 // eines
 FORM
 "indefinite singular masculine genitive"
 FEATURES definite=+ number=singular gender=neuter case=genitive
 END
 // eines
 FORM
 "indefinite singular neuter genitive"
 FEATURES definite=+ number=singular gender=neuter case=genitive
 END
 // einer
 FORM
 "indefinite singular feminine genitive"
 FEATURES definite=+ number=singular gender=neuter case=genitive
 END
 // etcetera
END

CATEGORY Adjective
 // basic form = positive degree, which is not use d
 // should also have feature to indicate presence/ absense of article
 FEATURES definite number gender case
 FORM "definite singular masculine nominative"
 FEATURES definite=+ number=singular gender=masc uline case=nominative
 END
 // (eine AKUTE Entzündung des linken Mastoids)
 FORM "definite singular feminine nominative"
 FEATURES definite=+ number=singular gender=masc uline case=nominative
 END
 // (eine acute Entzündung des LINKEN Mastoids)
 FORM "definite singular neuter genitive"
 FEATURES definite=+ number=singular gender=neut er case=genitive
 END
 // etcetera (51 forms in total)
END

// PHRASE CATEGORIES
CATEGORY NounPhrase
 FEATURES gender case number definite
END

CATEGORY AdjectivePhrase
 FEATURES case gender number definite
END

///////////////////
// EXTRA CATEGORIES
//
CATEGORY GenitiveNP
 BASE NP
 FEATURES case=genitive
END

////////////////////////
// SEGMENTS
// NP
SEGMENT NP determiner ART
 FEATURES case number gender definite
 DESTINATION PRIMARY=2
END

SEGMENT NP modifier ADJP
 FEATURES case number gender definite
 DESTINATION PRIMARY=4
END

SEGMENT NP head Noun
 FEATURES gender case affixRole
 DESTINATION PRIMARY=6
END

SEGMENT NP modifier GenitiveNP
 DESTINATION PRIMARY=7
END

// ADJP
SEGMENT ADJP head ADJ
 FEATURES gender definite affixRole

 12

 DESTINATION PRIMARY=2
END

END German

4.2.2.4 Create and populate the language model

Use Humpty as described in section 2.3 to add the words from your collection of test phrases to the
language model. Add the word forms and features as required.

4.2.3 Create linguistic annotations
In this step you will ‘link’ your new language model with the Grail model used by your application. First,
you should tag the wrappers of your Grail model and the relations you don't want to see expressed
linguistically. In our example this is not needed, but section 3.1 describes how to do this. More
background information on wrapper and suppression tagging can be found in part I of the
documentation. Then you should annotate the concepts from the Grail model with the lemmas from the
new language, and third, you should annotate certain relations in the model with frames in your
language model. Finally Below we will go into each of these activities in turn.

4.2.3.1 Concept annotations

Concept annotations are mappings from a concept in the grail model to a lemma in a language model.
They can be added using GCE as described in section 3.1. The concept annotations for the example are
presented below in MIF form:

CONCEPT Mastoid Noun "Mastoid"
CONCEPT Inflammation Noun "Entzündung"
CONCEPT left Adjective "linke"
CONCEPT acute Ajective "akut"

4.2.3.2 Relation annotations

Relation annotations specify how the defining criteria of a composite concepts map to syntactic frames.
They are described below: In the example concept, three types of criteria are used that express
localization, laterality, and chronicity respectively:

(Inflammation which < hasLocation
(Mastoid which < hasLaterality left >) hasChronicit y acute >)

You will have to decide how you want the generator to express criteria like these. In the example we
chose to express the localisation of some disorder in the body using a GenitiveNp. Laterality of parts of
the body and chronicity of disorders on the other hand can both be expressed by an adjectival phrase. The
relation annotations for the example fragment are shown below (in MIF format).

RELATION BodyPart hasLaterality lateralityValueType
 FRAME NP-modifier-ADJP
RELATION Disorder hasChronicity chronicityValueType
 FRAME NP-modifier-ADJP
RELATION Disorder hasLocation BodyPart
 FRAME NP-modifier-GenitiveNP

criterion to lemma

 The example fragment requires no frames with additional lemmas or segments. However, if we would
prefer to produce the phrase eine akute Entzündung in dem linken Mastoid over the example phrase we
would have to modify the relation annotation:

RELATION Disorder hasLocation BodyPart
 FRAME NP-modifier-GenitiveNP

to produce:

RELATION Disorder hasLocation BodyPart
 FRAME NP-modifier-PNP Preposition "in"

 13

which means that the localization of a disorder in a body part is preferably expressed using a
prepositional noun phrase in conjunction with the preposition in.

 14

Appendix A: Grammars in Humpty format (.GRM)

Finnish

// Lines starting with two slashes are not interpre ted by Humpty
//
// Filetype: Humpty grammar (.grm)
// Author: Wim Claassen
// File: finnish.grm
// Comments: Finnish grammar;
// Last Edit: 20-10-98

// indicate start of grammar file for finnish langu age:
LANGUAGE Finnish

// enable word affixes:
CATEGORY WordCategory
 FEATURES affixRole
END

// assign features to word categories and
// define word forms of these categories
CATEGORY Noun
 // here the statement FEATURES case=nominative nu mber=singular
 // has two effects:
 // 1) nouns have case and number
 // 2) the basic form of noun is nominative singul ar
 FEATURES case=nominative number=singular
 // define additional forms:
 FORM "genitive singular"
 FEATURES case=genitive number=singular
 END
 FORM "translative singular"
 FEATURES case=translative number=singular
 END
 FORM "partitive singular"
 FEATURES case=partitive number=singular
 END
 FORM "essive singular"
 FEATURES case=essive number=singular
 END
 FORM "inessive singular"
 FEATURES case=inessive number=singular
 END
 FORM "adessive singular"
 FEATURES case=adessive number=singular
 END
 FORM "illative singular"
 FEATURES case=illative number=singular
 END
 FORM "allative singular"
 FEATURES case=allative number=singular
 END
 FORM "elative singular"
 FEATURES case=elative number=singular
 END
 FORM "ablative singular"
 FEATURES case=ablative number=singular
 END
 FORM "instructive"
 FEATURES case=instructive
 END
 FORM "abessive singular"
 FEATURES case=abessive number=singular
 END
END

CATEGORY Adjective
 FEATURES case=nominative number=singular
 FORM "genitive singular"
 FEATURES case=genitive number=singular
 END
 FORM "translative singular"
 FEATURES case=translative number=singular
 END
 FORM "partitive singular"
 FEATURES case=partitive number=singular

 15

 END
 FORM "essive singular"
 FEATURES case=essive number=singular
 END
 FORM "inessive singular"
 FEATURES case=inessive number=singular
 END
 FORM "adessive singular"
 FEATURES case=adessive number=singular
 END
 FORM "illative singular"
 FEATURES case=illative number=singular
 END
 FORM "allative singular"
 FEATURES case=allative number=singular
 END
 FORM "elative singular"
 FEATURES case=elative number=singular
 END
 FORM "ablative singular"
 FEATURES case=ablative number=singular
 END
 FORM "instructive"
 FEATURES case=instructive
 END
 FORM "abessive singular"
 FEATURES case=abessive number=singular
 END
END

// assign features to phrase categories
CATEGORY NounPhrase
 FEATURES number case
END

CATEGORY AdjectivalPhrase
 FEATURES number case
END

// assign case to PNP and set value to partitive
CATEGORY PNP
 FEATURES case=partitive
END

///
// define subcategories to phrase categories

// define NominativeNP as subcategory to NP
// set case to nominative (feature case inherited from NP)
CATEGORY NominativeNP
 BASE NP
 FEATURES case=nominative
END

CATEGORY AccusativeNP
 BASE NP
 FEATURES case=accusative
END

CATEGORY GenitiveNP
 BASE NP
 FEATURES case=genitive
END

CATEGORY PartitiveNP
 BASE NP
 FEATURES case=partitive
END

CATEGORY IllativeNP
 BASE NP
 FEATURES case=illative
END

CATEGORY InessiveNP
 BASE NP
 FEATURES case=inessive
END

CATEGORY ElativeNP

 16

 BASE NP
 FEATURES case=elative
END

CATEGORY AllativeNP
 BASE NP
 FEATURES case=allative
END

CATEGORY AdessiveNP
 BASE NP
 FEATURES case=adessive
END

CATEGORY AblativeNP
 BASE NP
 FEATURES case=ablative
END

CATEGORY TranslativeNP
 BASE NP
 FEATURES case=translative
END

CATEGORY EssiveNP
 BASE NP
 FEATURES case=essive
END

CATEGORY AbessiveNP
 BASE NP
 FEATURES case=abessive
END

CATEGORY InstructiveNP
 BASE NP
 FEATURES case=instructive
END

//////////////////////////
// define segments

// segment with root=NP, function= modifier, foot=A DJP,
// position=3, and shared features={case, number}
SEGMENT NP modifier ADJP
 DESTINATION PRIMARY=3
 FEATURES case number
END

SEGMENT NP modifier GenitiveNP
 DESTINATION PRIMARY=2
END

SEGMENT NP prefix NP
 DESTINATION PRIMARY=4
END

SEGMENT NP prefix ADJP
 DESTINATION PRIMARY=4
END

SEGMENT NP head Noun
 DESTINATION PRIMARY=5
 FEATURES case number
END

SEGMENT NP modifier PartitiveNP
 DESTINATION PRIMARY=6
END

SEGMENT NP modifier InessiveNP
 DESTINATION PRIMARY=6
END

SEGMENT NP modifier IllativeNP
 DESTINATION PRIMARY=6
END

SEGMENT NP modifier AllativeNP
 DESTINATION PRIMARY=6

 17

END

SEGMENT NP modifier ElativeNP
 DESTINATION PRIMARY=6
END

SEGMENT NP modifier AblativeNP
 DESTINATION PRIMARY=6
END

SEGMENT NP modifier AdessiveNP
 DESTINATION PRIMARY=6
END

SEGMENT NP modifier TranslativeNP
 DESTINATION PRIMARY=6
END

SEGMENT NP modifier EssiveNP
 DESTINATION PRIMARY=6
END

SEGMENT NP modifier AbessiveNP
 DESTINATION PRIMARY=6
END

SEGMENT NP modifier InstructiveNP
 DESTINATION PRIMARY=6
END

SEGMENT NP modifier PNP
 DESTINATION PRIMARY=6
END

// PNP inherits all of the above plus PREP:
SEGMENT PNP functor PREP
 DESTINATION PRIMARY=1
END

SEGMENT ADJP head ADJ
 DESTINATION PRIMARY=2
 FEATURES case number
END

// indicate end of grammar file
END Finnish

 18

English

// Author: Wim Claassen
// Last Edit: 20-10-98
// Comments: English grammar;
// File: english.grm

LANGUAGE English

/////////////////////
// LEXICAL CATEGORIES

CATEGORY Noun
 FEATURES countNoun determinable number=singular
END

CATEGORY Article
 FEATURES number=singular definite=positive
 FORM 'indefinite singular'
 FEATURES number=singular definite=negative
 END
 FORM 'definite plural'
 FEATURES number=plural definite=positive
 END
 FORM 'indefinite plural'
 FEATURES number=plural definite=negative
 END
END

// MainVerb
CATEGORY MainVerb
 FEATURES participle=noParticiple tense=present
 FORM 'past participle'
 FEATURES participle=pastParticiple
 END
 FORM 'present participle'
 FEATURES participle=presentParticiple
 END
END

// Coordinating and Subordinating Conjunctions
CATEGORY Conjunction
 FEATURES number determinable
END

CATEGORY CoordinatingConjunction
 FEATURES number=plural determinable=negative
END

////////////////////
// PHRASE CATEGORIES

CATEGORY NounPhrase
 FEATURES number=singular definite determinable
END

CATEGORY AdjectivalPhrase
 FEATURES number definite
END

CATEGORY NominativeNP
 BASE NP
END

CATEGORY NonNominativeNP
 BASE NP
END

CATEGORY GenitiveNP
 BASE NonNominativeNP
END

CATEGORY IndeterminableNP
 BASE NounPhrase
 FEATURES determinable=negative
END

CATEGORY RelativeS
 BASE Sentence

 19

 FEATURES participle
END

CATEGORY PastParticipleS
 BASE RelativeS
 FEATURES participle=pastParticiple
END

CATEGORY PresentParticipleS
 BASE RelativeS
 FEATURES participle=presentParticiple
END

///////////////
// SEGMENTS

// NP
SEGMENT NP head Noun
 DESTINATION PRIMARY=6
 FEATURES number
END

SEGMENT NP determiner Article
 DESTINATION PRIMARY=2
 FEATURES number definite
END

SEGMENT NP modifier IndeterminableNP
 DESTINATION PRIMARY=5
END

SEGMENT NP modifier ADJP
 DESTINATION PRIMARY=4
END

SEGMENT NP modifier PNP
 DESTINATION PRIMARY=7
END

SEGMENT NP modifier PresentParticipleS
 DESTINATION PRIMARY=7
END

SEGMENT NP modifier PastParticipleS
 DESTINATION PRIMARY=7
END

// Conjunction is head of ConjunctiveNP so should h ave the same position
// as head of 'normal NP'
SEGMENT NP head Conjunction
 DESTINATION PRIMARY=6
 FEATURES number determinable
END

SEGMENT NP conjunctionElement NP
 DESTINATION PRIMARY=1
END

// PNP inherits all of the above plus PREP:
SEGMENT PNP functor Preposition
 DESTINATION PRIMARY=1
END

// ADJP
SEGMENT ADJP head Adjective
 DESTINATION PRIMARY=2
END

// S
SEGMENT PresentParticipleS head MainVerb
 DESTINATION PRIMARY=1
 FEATURES participle
END

SEGMENT PresentParticipleS directObject NP
 DESTINATION PRIMARY=2
END

SEGMENT PastParticipleS head MainVerb

 20

 DESTINATION PRIMARY=1
 FEATURES participle
END

SEGMENT PastParticipleS modifier PNP
 DESTINATION PRIMARY=2
END

END English

 21

Dutch

// Author: Wim Claassen
// Created: 06-02-98
// LastEdit: 20-10-98

LANGUAGE Dutch

CATEGORY WordCategory
 FEATURES affixType
END

CATEGORY Verb
 FEATURES tense person number participle infinitiv eVerb
 syntacticallyReflexive reciprocal
 separableVerb syntacticallyTransitive
END

CATEGORY MainVerb
 FEATURES number=plural tense=present
 FORM 'present singular 1'
 FEATURES number=singular tense=present person=f irstPerson
 END
 FORM 'present singular 23'
 FEATURES number=singular tense=present person=s econdOrThirdPerson
 END
 FORM 'past singular'
 FEATURES number=singular tense=past
 END
 FORM 'past plural'
 FEATURES number=plural tense=past
 END
 FORM 'past participle'
 FEATURES participle=pastParticiple
 END
 FORM 'present participle'
 FEATURES participle=presentParticiple
 END
END

CATEGORY Noun
 FEATURES gender countNoun determinable number=sin gular

 FORM plural
 FEATURES number=plural
 END
END

CATEGORY Pronoun
 FEATURES person gender number case
END

CATEGORY PersonalPronoun
 FEATURES case=nominative
 FORM nonNominative
 FEATURES case=nonNominative
 END
END

CATEGORY PossessivePronoun
 FEATURES case=nominative
 FORM nonNominative
 FEATURES case=nonNominative
 END
END

CATEGORY Article
 FEATURES gender=nonNeuter number=singular definit e=positive
 FORM "definite plural"
 FEATURES definite=positive number=plural
 END
 FORM "definite singular neuter"
 FEATURES definite=positive number=singular gend er=neuter
 END
 FORM "indefinite singular"
 FEATURES definite=negative number=singular
 END
 FORM "indefinite plural"
 FEATURES definite=negative number=plural

 22

 END
END

CATEGORY Adjective
FEATURES number=singular gender=neuter definite=neg ative diminutive
 inflection
 FORM inflected
 FEATURES inflection=positive
 END
END

CATEGORY PhraseCategory
 FEATURES affixRole
END

CATEGORY Sentence
 FEATURES number person tense aspect mood
END

CATEGORY NounPhrase
 FEATURES number person gender definite case
END

CATEGORY AdjectivalPhrase
 FEATURES number gender definite
END

CATEGORY NominativeNP
 BASE NP
 FEATURES case=nominative
END

CATEGORY NonNominativeNP
 BASE NP
 FEATURES case=nonNominative
END

CATEGORY AccusativeNP
 BASE NonNominativeNP
 FEATURES case=accusative
END

CATEGORY DativeNP
 BASE NonNominativeNP
 FEATURES case=dative
END

CATEGORY GenitiveNP
 BASE NonNominativeNP
 FEATURES case=genitive
END

CATEGORY PrefixADJP
 BASE ADJP
 FEATURES affixRole=prefix
END

CATEGORY SuffixADJP
 BASE ADJP
 FEATURES affixRole=suffix
END

CATEGORY PrefixNP
 BASE NP
 FEATURES affixRole=prefix
END

CATEGORY SuffixNP
 BASE NP
 FEATURES affixRole=suffix
END

CATEGORY PNP
 FEATURES case=nonNominative
END

CATEGORY NP
 FEATURES number=singular
END

 23

SEGMENT NP head Noun
 DESTINATION PRIMARY=6
 FEATURES gender affixRole
END

SEGMENT NP determiner ART
 DESTINATION PRIMARY=2
 FEATURES number gender definite
END

SEGMENT NP modifier ADJP
 DESTINATION PRIMARY=4
 FEATURES number gender definite
END

SEGMENT NP modifier PNP
 DESTINATION PRIMARY=7
END

// PNP inherits all of the above plus PREP
SEGMENT PNP functor PREP
 DESTINATION PRIMARY=1
END

//ADJP
SEGMENT ADJP head ADJ
 DESTINATION PRIMARY=2
 FEATURES gender definite affixRole
END

SEGMENT ADJP modifier PNP
 DESTINATION PRIMARY=1
END

// Morphological segments
SEGMENT NP prefix PrefixADJP
 DESTINATION PRIMARY=5
END

SEGMENT NP prefix PrefixNP
 DESTINATION PRIMARY=5
END

// S segments for simple active phrases:
SEGMENT S head MV
 DESTINATION PRIMARY=2
 FEATURES number person tense
END

SEGMENT S subject NominativeNP
 DESTINATION PRIMARY=1
 FEATURES number person
END

SEGMENT S directObject NonNominativeNP
 DESTINATION PRIMARY=4
END

SEGMENT S indirectObject NonNominativeNP
 DESTINATION PRIMARY=3
END

SEGMENT S modifier PNP
 DESTINATION PRIMARY=5
END

// Coordinating and Subordinating Conjunctions (bot h children of Conjunction)
CATEGORY Conjunction
 FEATURES number=plural determinable=negative
END

// Conjunction is head of ConjunctiveNP so must hav e the same position
// as head of NP
SEGMENT NP head Conjunction
 DESTINATION PRIMARY=6
 FEATURES number determinable
END

SEGMENT NP conjunctionElement NP
 DESTINATION PRIMARY=1

 24

END

END Dutch

 25

Appendix B: Format of interchange files (.MIF; .LIF)
The source files for language models and semantic models are in Lexicon Interchange Format (.LIF) and
Mapping Interchange Format (.MIF) respectively. Below these formats are described in EBNF notation.

<LIF> ::= LANGUAGE <language> <lemmas>
<language> ::= <string>
<lemmas> ::= 1{<lemma>}
<lemma> ::= LEMMA <lemma_category> <spelling> [<features>] [<forms>]
<lemma_category> ::= <lemma_category_full> | <lemma_category_abbrev>
<lemma_category_full> ::= Noun | Adjective | Article | Preposition | Adverb | ProperName | PN |

CoordinatingConjunction | SubordinatingConjunction | MainVerb |
AuxiliaryVerb | CopulaVerb | CardinalNumber | PersonalPronoun |
PossessivePronoun | DemonstrativePronoun | InterrogativePronoun |
IndefinitePronoun | ReflexivePronoun | ReciprocalPronoun |
RelativePronoun |

<lemma_category_abbrev> ::= N | ADJ | ART | PREP | ADV | COOCON | SUBCON | MV | AV | CV
| CARD | PERSPRO | POSSPRO | DEMONPRO | INTERPRO |
INDEFPRO | REFLPRO | RECIPRO | RELPRO

<spelling> ::= “ <string>”
<features> ::= FEATURES 1{<feature>}
<feature> ::= <feature_name><feature_value>
<feature_name> ::= number | gender | definite | case | prenominal | inflection | affixRole |

countable | determinable | diminutive form | tense | aspect | participle |
syntacticallyTransitive | syntacticallyReflexive | reciprocal |
separableVerb | diminutiveForm

<feature_value> ::= singular | plural | masculine | feminine | neuter | + (positive) | -
(negative) | nominative | genitive | dative | accusative | translative |
partitive | essive | inessive | adessive | illative | allative | elative |
ablative | instructive | abessive | prefix | infix | suffix | past | present |
future | perfect | imperfect | presentParticiple | pastParticiple

<forms> ::= FORMS 1{<form>}
<form> ::= <lexeme_category> <spelling>
<lexeme_category> ::= “<string>”
<string> ::= 1{a..z | A..Z | 0..9}

<MIF> ::= LANGUAGE <language> 0{<suppress>} 0{<wrapper>}

0{<concept_annotation >}0{<relation_ annotation >}
<suppress> ::= SUPPRESS <concept> <attribute> <concept>
<wrapper> ::= WRAPPER <concept> <attribute> <concept>
<concept> ::= <string>
<attribute> ::= <string>
<concept_annotation> ::= CONCEPT <concept> 1{<lemma_category> <spelling>}
<relation_annotation> ::= RELATION <concept> <attribute> <concept> 1{<frame>}
<frame> ::= FRAME <segment> [<lemma_category> <spelling>
 [WITH <segment> [<lemma_category> <spelling>]]]
<concept> ::= <string>
<segment> ::= <phrase_category>-<function>-<constituent_category>
<phrase_category> ::= NP | S | PP | ADJP | PNP | ADVP
<function> ::= head | modifier | functor | determiner | prefix | postfix | subject |

directObject | indirectObject | complement | auxiliary | particle |
predicate | conjunctionElement

<constituent_category> ::= <lemma_category_abbrev> | <phrase_category> |
<other_phrase_category>

<other_phrase_category> ::= <string>

